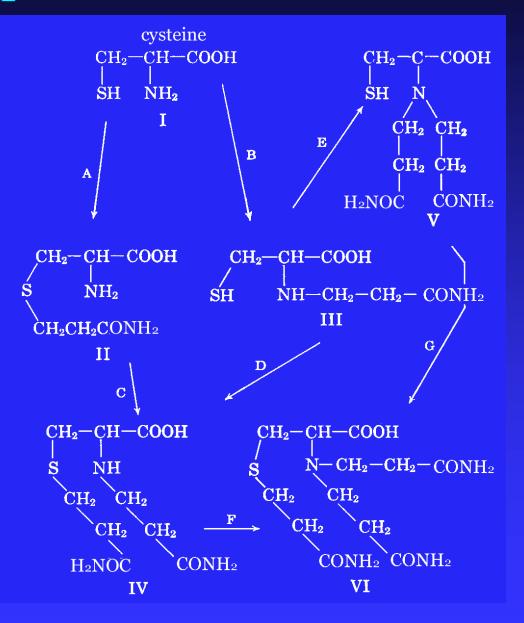
Acrylamide in Food Workshop, FDA, October 28-30, 2002

Chemical Basis for Biological Effects of Acrylamide Mendel Friedman, Western Regional Research Center Agricultural Research Service, USDA, Albany, CA 94710


Outline

- 1. Reactions of protein functional groups with acrylamide and related compounds.
- 2. Concurrent formation of other potentially toxic compounds during heating of food: mutagenic browning products and heterocyclic amines.
 - Are the effects additive, synergistic, antagonistic?
 - Significance for risk assessment.
 - How much is actually formed compared to what is measured?
 - Reactions in food: polymerization; reaction with other food ingredients such as lysine and histidine.
- 3. Mechanism of action of acrylamide in vivo: acrylamide and glycidamide. Comparison with aflatoxin.
- 4. Possible sources of acrylamide in food.
- 5. Does browning prevention by sulfur amino acids also concurrently prevent the formation and/or reduce levels of acrylamide in food?
- 6. Since numerous other browning-induced compounds are present in food, are published toxicity data for pure acrylamide relevant to acrylamide in food?

Terminology – Nomenclature

Acrylamide (CH₂=CH-CONH₂) is a member of a class of compounds known as: α , β -unsaturated compounds; conjugated vinyl compounds; electrophiles (electron-loving). Acrylamide avidly participates in nucleophilic addition reactions with nucleophiles (electron-rich) compounds which include protein functional groups such the SH group of cysteine, N-terminal NH₂ groups, ϵ -NH₂ groups of lysine and the NH group of the imidazole ring of histidine. Other members of the group include acreloin (CH₂=CH-CHO), acrylonitrile (CH₂=CH-CN), methyl acrylate (CH₂=CH-CO₂CH₃), methyl vinyl sulfone (CH₂=CH-SO₂CH₃), and vinyl pyridine. Relative reaction rates are governed by the ability of the CONH₂ group of acrylamide to withdraw electrons from the double bond compared to the CN group, etc.

Competitive-consecutive reactions

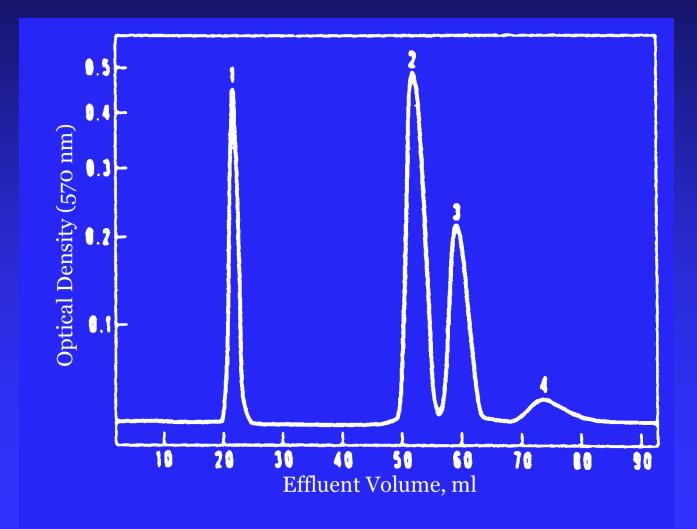
 $S---CH_2---CH(NH_3^+)COO^-$ | CH_2--CH_2--R

I: R = CNII: $R = CONH_2$ III: $R = CO_2CH_3$ IV: $R = CO_2H$ (after hydrolysis)

Reaction Products of the e-NH₂ Group of Lysine with Acrylonitrile and Acrylamide

ε-NH₂-(CH₂)₄-CH(NH₂)-COOH L-lysine

ε-NH(CH₂CH₂CN)-(CH₂)₄-CH(NH₂)-COOH **e-N-(b-cyanoethyl)-L-lysine** (acrylonitrile)


 ϵ,ϵ -N(CH₂CH₂CN)₂-(CH₂)₄-CH(NH₂)-COOH **e,e-N-***bis* (**b**-cyanoethyl)-L-lysine (acrylonitrile)

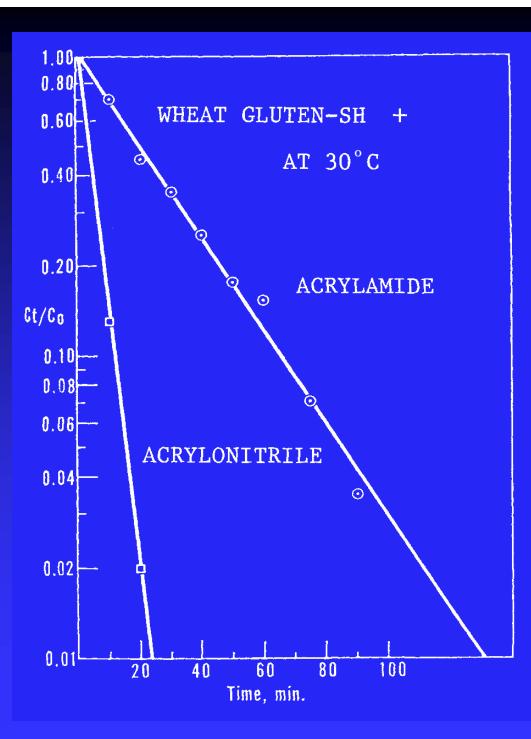
ε-NH(CH₂CH₂CONH₂)-(CH₂)₄-CH(NH₂)-COOH e-N-(**b**-carbamidoethyl)-L-lysine (postulated with acrylamide)

 ϵ,ϵ -N(CH₂CH₂CONH₂)₂-(CH₂)₄-CH(NH₂)-COOH e,e-N-*bis*(**b**-carbamidoethyl)-L-lysine (postulated with acrylamide)

> ε-NH(CH₂CH₂COOH)-(CH₂)₄-CH(NH₂)-COOH e-N-(b-carboxyethyl)-L-lysine (hydrolysis product)

 $\epsilon_{,\epsilon}-N(CH_{2}CH_{2}COOH)_{2}-(CH_{2})_{4}-CH(NH_{2})-COOH$ e,e-N-*bis*(b-carboxyethyl)-L-lysine (hydrolysis product) Elution positions of (1) ε -*N*,*N*-bis(β cyanoethyl)-L-lysine (2) L-lysine, (3) ε -*N*-(β carboxyethyl)-L-lysine, and (4) ammonia

Second-order rate constants ($k_2 \ge 10^4$ in l./mole sec) for reaction of amino groups with **a**,**b**-unsaturated compounds at 30°

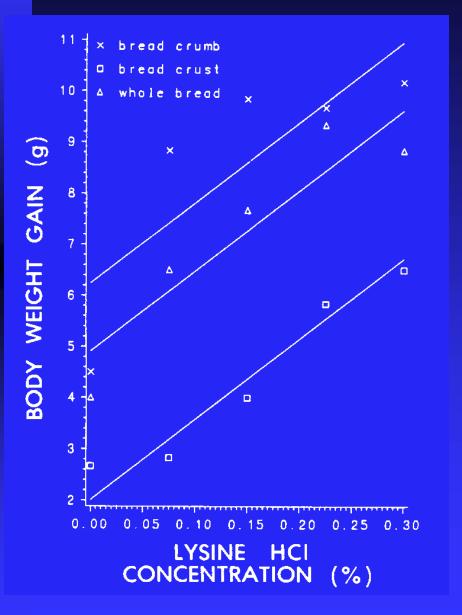

*k*₂, pH 8.4

Compound	diglycine	glycine
CH ₂ =CHCONH ₂ (Acrylamide)	1.3	0.49
CH ₂ =CHCON(CH ₃) ₂	0.21	0.072
CH ₂ =CHCN	9.5	3.9
CH ₂ =CHSO ₂ CH ₃	62.7	

Second-order rate constants for the reaction of the S⁻ group in $^{-}S-CH_2CH_2COO^{-}$ and the NH₂ group in NH₂-CH₂COO⁻ at pH 8.1 and 30°

Datio of

	<i>k</i> ₂ (S⁻)	$k_2(\mathrm{NH}_2)$	rates
Vinyl compound	X 10 ²	X 10 ⁵	(S ⁻ /NH ₂)
Acrylonitrile	2.70	20.4	132
Methyl acrylate	11.0	76.0	145
Acrylamide	0.46	2.60	178


Amino acid	Whole gluten	Gluten and methyl acrylate 10 min	Gluten and acrylonitrile 30 min	Gluten and acrylamide 90 min			
		moles amino acid/ moles alanine					
Lysine	0.269	0.280	0.280	0.282			
Histidine	0.490	0.512	0.508	0.496			
Arginine	0.658	0.667	0.653	0.670			
Aspartic acid	0.723	0.761	0.751	0.786			
Threonine	0.865	0.875	0.872	0.865			
<mark>Ser</mark> ine	2.07	2.19	2.17	2.16			
Glutamic acid	12.1	12.3	12.3	12.5			
Proline	5.42	5.50	5.31	5.36			
Glycine	1.71	1.75	1.76	1.72			
Alanine	1.00	1.00	1.00	1.00			
Half-cystine	0.643	0.000	0.000	0.000			
Valine	1.35	1.36	1.38	1.37			
Isoleucine	1.12	1.15	1.13	1.14			
Leucine	2.21	2.18	2.21	2.19			
Tyrosine	0.744	0.784	0.770	0.766			
Phenylalanine	1.24	1.26	1.23	1.25			

Relative amino acid composition of alkylated wheat gluten

Amino acid	Whole BSA	Whole BSA BSA and methyl acrylate 10 min		BSA and acrylamide 90 min			
		moles amino acid/ moles alanine					
Lysine	1.36	1.36	1.36	1.36			
Histidine	0.337	0.342	0.334	0.322			
Arginine	0.472	0.482	0.471	0.479			
Aspartic acid	1.19	1.18	1.19	1.18			
Threonine	0.725	0.742	0.732	0.744			
Serine	0.629	0.608	0.624	0.625			
Glutamic acid	1.77	1.78	1.77	1.79			
Proline	0.606	0.613	0.686	0.678			
Glycine	0.341	0.351	0.344	0.353			
Alanine	1.00	1.00	1.00	1.00			
Half-cystine	0.437	0.000	0.000	0.000			
Valine	0.730	0.787	0.787	0.784			
Isoleucine	0.271	0.288	0.279	0.283			
Leucine	1.26	1.32	1.34	1.32			
Tyrosine	0.364	0.379	0.381	0.339			
Phenylalanine	0.535	0.556	0.573	0.556			

Relative amino acid composition of alkylated bovine serum albumin

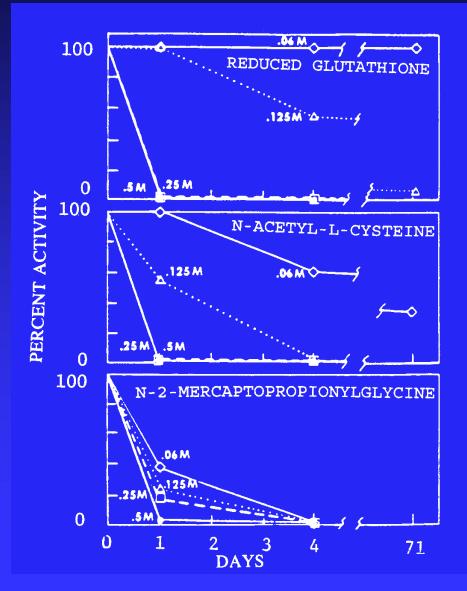
Nutritional Improvement of Bread

Weight gain in mice after 14 days fed whole bread, bread crumb, and bread crust supplemented with lysine before baking (cobaked) (Friedman and Finot, 1990)

Does added lysine react with acrylamide in the crust?

Prevention of browning in commercial fruit juices by sodium bisulfite and *N*-acetyl-L-cysteine (Molnar-Perl and Friedman, 1990). Does browning prevention by SH-containing amino acids also prevent the formation of acrylamide?

Inhibition (%)


	Sodium bisulfite (mM)				N-acetyl-L-cysteine (mM)					
Juice	1.0	2.0	4.0	8.0	16.0	2.5	1.0	25	50	100
Grape	10	25	69	72	100	6	18	35	79	100
Apple	42	50	59	93	100	1	36	52	87	100
Apple	10	40	49	100	100	5	40	55	92	93
Pineapple	11	39	68	102	105	10	35	54	76	100
Grapefruit	18	25	39	63	100	32	61	75	87	93
Orange	13	49	69	92	108	3	69	66	72	107

Prevention of browning in protein-containing foods by sodium bisulfite and *N*-acetyl-L-cysteine (Molnar-Perl and Friedman, 1990). Does browning prevention by SH-containing amino acids also prevent the formation of acrylamide?

	Sodium bisulfite (mM)				N	N-acetyl-L-cysteine (mM)				
Protein source	2.5	25	50	100	200	25	6.2	125	250	500
Casein	4	12	44	82	100	0	25	42	101	101
Barley flour	3	43	61	98	95	36	42	79	96	104
Soy flour	10	27	80	98	102	19	38	84	99	101
Nonfat dry milk	3	23	44	94	104	19	43	78	98	101
Isomil	7	29	72	88	100	7	43	65	93	109

Inhibition (%)

Effect of thiol concentration on time of inactivation of mutagenic activity of aflatoxin B_1 by reduced glutathione, N-acetylcysteine, and *N*-2-mercaptopropionylglycine (Friedman et al., 1982)

Biochemistry of Acrylamide

- **1.** Metabolic transformation of acrylamide to glycidamide.
- **2.** Chemical modification (alkylation) of:
 - a. Non-protein SH groups (cysteine, homocysteine, glutathione).
 - **b.** Protein SH groups (enzymes and structural proteins).
 - c. N-terminal NH₂ group of valine residue of hemoglobin.
 - d.
 -NH₂ groups of lysine residues?; NH of imidazole ring of histidines?; di-alkylation reactions?
 - e. NH₂ groups of guanine and other nucleic acids.
- **3.** Non-covalent interactions with tryptophan residues of proteins resulting in quenching of tryptophan fluorescence.

Toxicology of Acrylamide

Genotoxicity Clastogenicity (chromosomeaberrations in germ cells) **Epigenetic activity** Carcinogenicity Neurotoxicity Is the toxicology of pure acrylamide relevant to acrylamide in food?

Research Needs

- 1. Does prevention of food browning by sulfur amino acids and peptides also prevent acrylamide formation?
- Do low-lysine proteins (wheat gluten, zein) produce more acrylamide than high-lysine proteins (casein, soy protein, meat proteins)? If so, why?
- 3. Will replacement of corn meal with high-lysine corn meal result in less acrylamide in potato chips and tortillas?
- 4. Can we change the composition of the diet to minimize acrylamide formation?
- 5. Do heat-induced Maillard browning products and other food ingredients affect the safety of acrylamide after consumption? Significance for risk assessment.
- 6. What is the rate-determining step in acrylamide formation in food and can we control it?

Basic Studies on Reactions of Amino Acids and Proteins with Acrylamide, Related Vinyl Compounds, and Processing-Induced Changes in Food

- Friedman, M., Cavins, J. F. and Wall, J. S. Relative nucleophilic reactivities of amino groups and mercaptide ions in addition to reactions with α, β-unsaturated compounds. *J. Amer. Chem. Soc.* 87: 3572-3582. 1965.
- Friedman, M. and Wall, J. S. Additive linear free energy relationships in reaction kinetics of amino groups with α, β-unsaturated compounds. *J. Org. Chem.* 31: 2888-2894. 1966.
- Friedman, M. Solvent effects in reactions of amino groups in amino acids, peptides, and proteins with α, βunsaturated compounds. *J. Amer. Chem. Soc.* 89: 4709-4713. 1967.
- Cavins, J. F. and Friedman, M. New amino acids derived from reactions of ε -amino groups in proteins with α , β -unsaturated compounds. *Biochemistry* 6: 3766-3770. 1967.
- Krull, H. and Friedman, M. Anionic polymerization of methyl acrylate to protein functional groups. *J. Polym. Sci.* A-1, 5: 2535-2546. 1967.
- Friedman, M. and Romersberger, J. A. Relative influences of electron-withdrawing functional groups on basicities of amino acid derivatives. *J. Org. Chem.* 33: 154-157. 1968.
- Cavins, J. F. and Friedman, M. Specific modification of protein sulfhydryl groups with α, β-unsaturated compounds. *J. Biol. Chem.* 243: 3357-3360. 1968.
- Friedman, M. The Chemistry and Biochemistry of the Sulfhydryl Group in Amino Acids, Peptides,
- *and Proteins*. Permagon Press, Oxford, England, 485 pages. 1973.
- Friedman, M. Reactions of cereal proteins with vinyl compounds. In *Industrial Uses of Cereal Grains*, Y. Pomeranz, Ed., AACC, Minneapolis, 237-251. 1973.
- Finley, J. W. and Friedman, M. Chemical methods for available lysine. *Cereal Chem.* 50: 101-105. 1973.

- Snow, J. T., Finley, J. W. and Friedman, M. Relative reactivities of sulfhydryl groups with N-acetyldehydroalanine and N-acetyldehydroalanine methyl ester. Int. J. Pept. Prot. Res. 8: 57-64. 1976.
- Friedman, M., Wehr, C. M., Schade, J. E. and MacGregor, J. T. Inactivation of aflatoxin B1 mutagenicity by thiols. Food Chem. Toxicol. 20: 887-892. 1982.
- Friedman, M. (Editor). *Absorption and Utilization of Amino Acids*. 3 volumes. CRC, Boca Raton, FL, 1989.
- MacGregor, J. T., Tucker, J. D., Ziderman, I. I., Wehr, C. M., Wilson, R. E. and Friedman, M. Nonclastogenicity in mice of fructose/lysine and other sugar/amino acid browning products with in vitro genotoxicity. Food Chem. Toxicol. 27: 715-721. 1989.
- Friedman, M. and Finot, P. A. Nutritional improvement of bread with lysine and γ-glutamyl-lysine. J. Agric. Food Chem. 38: 2011-2020. 1990.
- Friedman, M., Wilson, R. E. and Ziderman, I. I. Mutagen formation in heated wheat gluten, carbohydrates and gluten-carbohydrate blends. J. Agric. Food Chem. 38: 1019-1028. 1990.
- Friedman, M. (Editor). *Nutritional and Toxicological Consequences of Food Processing*, Adv. Exp. Med. Biol., Vol. 289, Plenum, NY, 540 p. 1991.
- Friedman, M. Food browning and its prevention. J. Agric. Food Chem. 44: 631-653. 1996.
- Friedman, M. Chemistry, biochemistry, nutrition, and microbiology of lysinoalanine, lanthionine, and <u>histidinoalanine in foo</u>d and other proteins. J. Agric. Food Chem. 47: 1295-1319. 1999.
- Friedman, M. Chemistry, nutrition, and microbiology of D-amino acids. J. Agric. Food Chem. 47: 3457-3479. 1999.
- Friedman, M. Application of the S-pyidylethylation reaction to the elucidation of the structures and functions of proteins. J. Protein Chem. 20: 471-493. 2001.
- Friedman, M. and Brandon, D. L. Nutritional and health benefits of soy proteins. J. Agric. Food Chem. 49: 1069-1086. 2001.