

Detection of Food Allergens: Current Analytical Methods and Future Needs

Lauren S. Jackson, Ph.D. Food and Drug Administration National Center for Food Safety & Technology 6502 S. Archer Rd. Summit-Argo, IL 60501

JIFSAN Advisory Council Spring Symposium Wednesday, March 24, 2010

Presentation Outline

Background

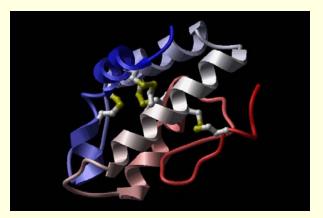
- Characteristics of food allergens
- Type of materials that are analyzed
- Methods for detection of allergens
 - Immunochemical methods
 - PCR
 - Mass spectrometry
 - Non-specific methods
 - Methods in development
- Conclusions

Background

- Food allergies- immunological response to proteins
- Food allergies are a major health issue in industrialized countries
 - 10-12 million people in the U.S.
 - 30,000 emergency room visits due to food allergies
 - 150 deaths
- Prevalence is increasing
- Impact on society

Undeclared Allergens

- Strict avoidance is used by individuals with food allergies
- Food labels are used to indicate the intended presence or absence of allergens
- Undeclared allergens can be inadvertently introduced into a food
 - Ingredient/supplier changes
 - Labeling errors
 - Improper use of rework
 - Cross-contact


Why Test for Allergens?

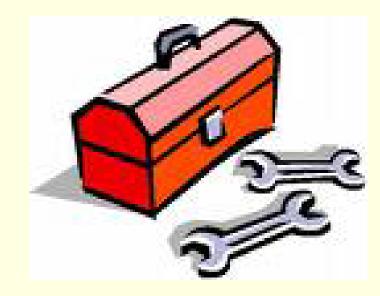
Consumer safety Ensure accuracy of food labeling Cleaning effectiveness Consumer complaints

Properties of Food Allergens

Proteins Typically 10-80 kDa Most are water soluble No commonality in structure or amino acid sequence Multiple IgE binding sites Resistant to heat

What Do We Test?

- Ingredients or raw materials
- End product testing
- Environmental samples
- Cleaning
 - Food-contact surfaces
 - Rinse-water
 - Push through materials (salt, sugar, first product off line)

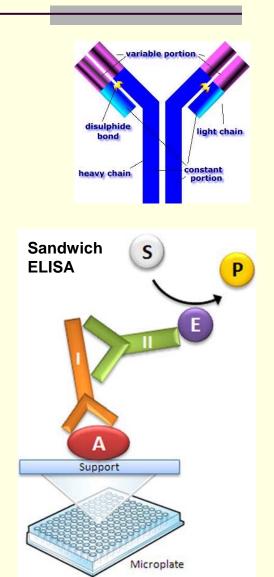


Allergen Detection "Toolbox"

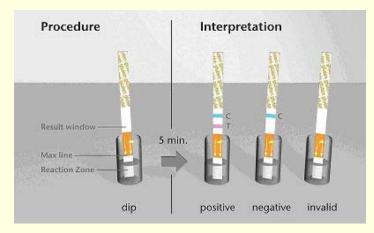
Immunochemical methods

- ELISA
- Lateral flow devices (dipsticks)
- Multiplex
- **DNA-based methods**
 - PCR
 - Multiplex
- Mass spectrometry Generic/non-specific (cleaning)
 - Protein
 - ATP
 - Visual inspection
- Other methods

Choice of Allergen Detection Method


Purpose Type of sample Food matrix Processing effects Turn-around time Availability of equipment/cost

Enzyme-Linked Immunoassay (ELISA)


- Antibody-based detection of allergenic protein or other protein in food
- Available in well and lateral flow formats
- Sandwich format most common
- Analysis take between 1 2 h to complete
- Quantitative or qualitative
- Kits available for most of the 8 major allergens
- Used for ingredients, finished products, cleaning fluids, swabs, environmental samples

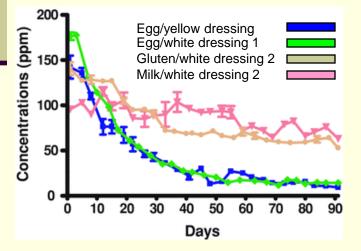
Lateral Flow Devices (LFD) and Dipstick Tests

- Qualitative (can be semiquantitative with reader)
- Available for many allergenic foods
- Typically used for environmental sampling, cleaning verification, screening of foods
- True measurement of presence of allergenic food
 - Rapid
- Sensitive (DL~ 5 ppm)

Advantages of ELISA

- Sensitive (ppm range)
- Quantitative or semi-quantitative
- Measure amount of offending food component (i.e. proteins)
- Antibody can detect allergenic proteins or marker protein in food

Fairly rapid


- Equipment needs are minor (plate reader)
- Skill level = low to medium

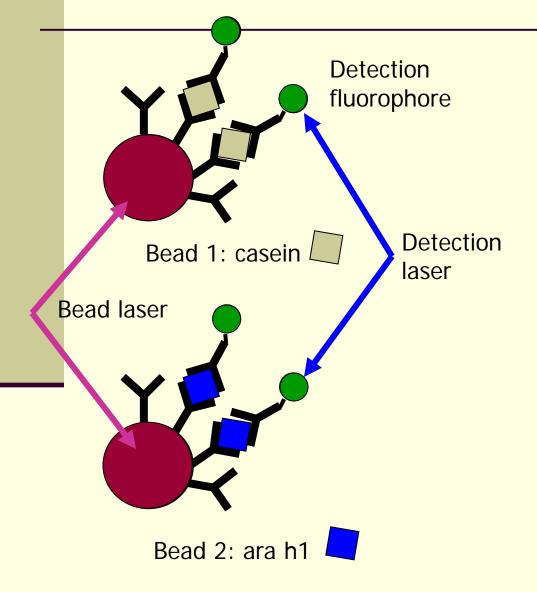
Limitations of ELISA

- Some training required/adherence to instructions
- Sampling important
- Extraction and immunoreactivity important
- Food matrix important
 - Polyphenols
 - Oils
 - pH
 - Processing

From: Taylor et al. 2009, JFS; 74(5):T46-50

Limitations of ELISA

Cross-reactivity


Need to understand what kit detects (e.g. some milk kits detect casein while other detect whey proteins)

- Values obtained from kits do not agree
 - Lack of reference materials
- Need to do "in house" validation of ELISA

Immunochemical Methods of the Future: Multiplexed approaches for detecting protein allergens-(Bioplex) Eric Garber (FDA/CFSAN) and coworkers

- Beads are labeled with antibodies for selected antigens

- Beads are mixed and exposed to antigens for binding

 Second antigen-specific labeled antibody is added for detection

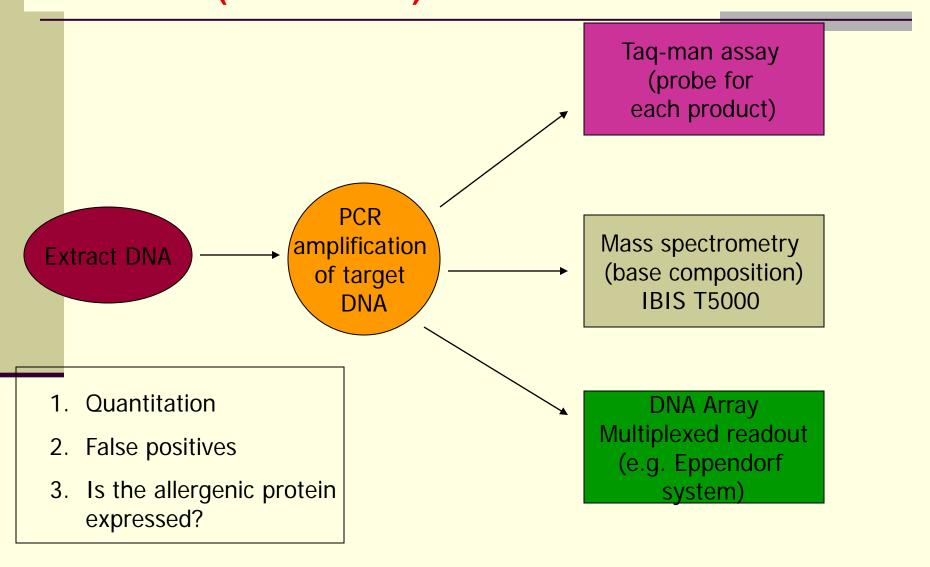
- Beads flow through optical path of two lasers

- First laser identifies bead by color; correlated with specific antigen

- Second laser determines whether recognition event has occurred and how many

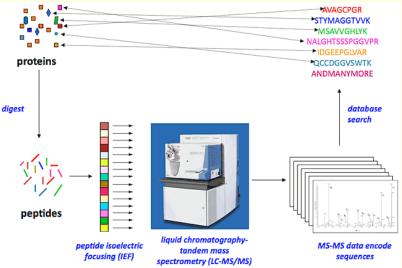
Polymerase Chain Reaction (PCR)

- Detects DNA sequences indicative of allergenic species
- Based on heat stable DNA polymerase amplifies DNA fragment
- Kits available for milk, peanut, soy, walnut, hazelnut, fish, crustaceans
- Useful in cases where ELISAs are not available or results questionable (e.g. hydrolyzed proteins)
- Good method for verifying ELISA or immunochemical assay results
- Equipment are becoming more common
- Very specific
- High throughput
- Multi-screening (multiplex) potential



PCR-Pitfalls

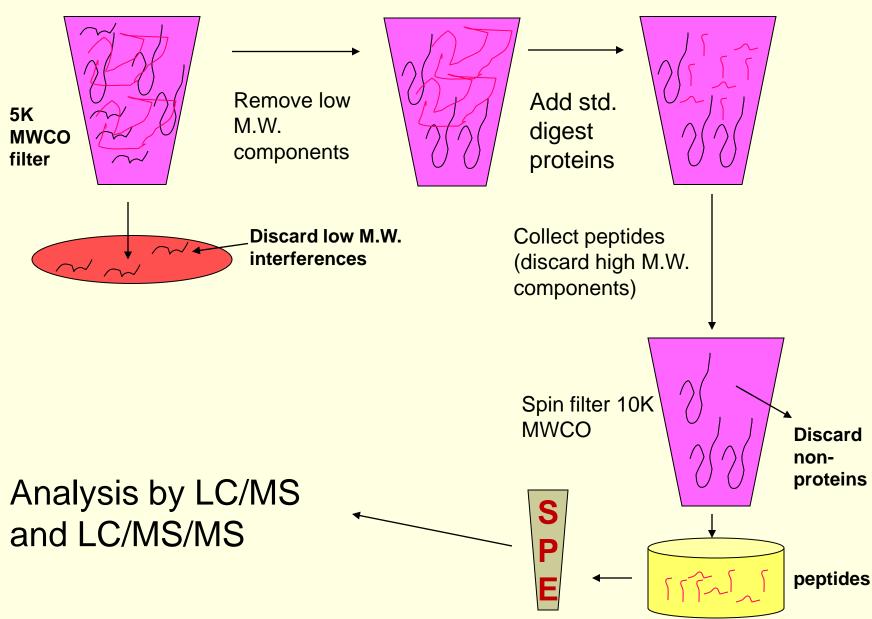
- Detect DNA not protein
- Qualitative
- Sample preparation and analysis require skill
- Cross-contamination possibilities
- Equipment expensive and not available in all labs
- Absence of DNA does not indicate absence of protein


The Future of PCR-Based Analysis: Multiplexed approaches for detecting allergen DNA Eric Garber (FDA/CFSAN) and coworkers

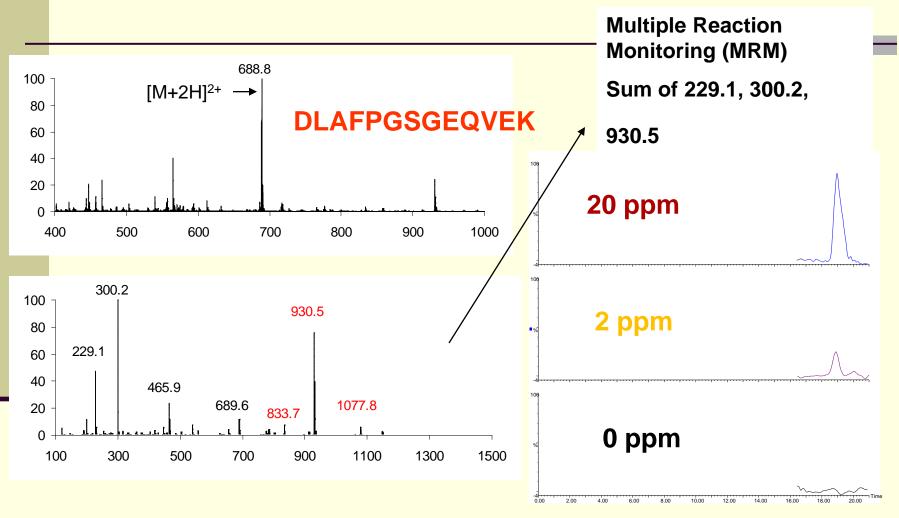
Mass Spectrometry

- Detects proteins and peptides
- Involves extraction, cleanup, ionization, separation of ionized protein/peptide, detection
- High degree of sensitivity and resolving power
- Provides protein composition, structure and sequence information
- Protein detection and confirmation in single run
- Peptides detection and quantification easier

Ara h1 as a Marker for Peanut in Foods


Callahan et al. (FDA/CFSAN)

 - 68 kDa vicilin seed storage protein MRGRVSPLMLLLGILVLASVSATQAKSPYRKTENPCAQRCLQSCQQEP DDLKQKACESRCTKLEYDPRCVYDTGATNQRHPPGERTRGRQPGDYD DDRRQPRREEGGRWGPAEPREREREEDWRQPREDWRRPSHQQPRK IRPEGREGEQEWGTPGSEVREETSRNNPFYFPSRRFSTRYGNQNGRI RVLQRFDQRSKQFQNLQNHRIVQIEARPNTLVLPKHADADNILVIQQGQ ATVTVANGNNRK**SFNLDEGHALR**IPSGFISYILNRHDNQNLRVAKISMPV NTPGQFEDFFPASSRDQSSYLQGFSRNTLEAAFNAEFNEIRRVLLEEN AGGEQEERGQRRRSTRSSDNEGVIVKVSKEHVQELTKHAKSVSKKGS EEEDITNPINLRDGEPDLSNNFGRLFEVKPDKKNPQLQDLDMMLTCVEI KEGALMLPHFNSKAMVIVVVNKGTGNLELVAVRKEQQQRRREQEWEE EEEDEEEGSNREVRRYTARLKEGDVFIMPAAHPVAINASSELHLLGFGI NAENNHRIFLAGDKDNVIDQIEKQAKDLAFPGSGEQVEKLIKNQRESHF VSARPQSQSP&SPEKEDQEEENQGGKGPLLSN_KAFN


> 606.7 [M+3H]³⁺

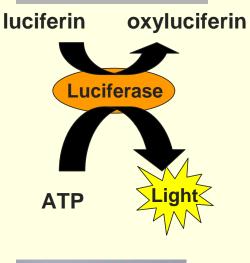
686.8 [M+2H]²⁺

General Sample Preparation

Low-ppm confirmation of Ara h1 in chocolate

Mass Spectrometry

Advantages

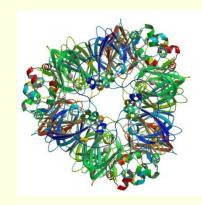

- Absolute identification and quantification of allergens
- Highly sensitive
- Excellent confirmatory method

Limitations

- Requires high level of expertise
- High cost of equipment
- Time consuming
- Laborious
- Extraction and cleanup needed
- Not useful for routine analyses

Non-Specific Methods: ATP

- Sanitation effectiveness
- Detects ATP from biological sources
- Conventional ATP swabs hygiene
- Sensitive ATP swabs detect presence of food soils
- Advantages
 - Rapid (< 30 sec)</p>
 - Less expensive than ELISA
 - Test can be performed on site ('real time')
 - Disadvantages
 - Limited applicability (wet-cleaned surfaces)
 - May pick up ATP from water supply
 - Measures presence of ATP, not allergenic food
 - May be difficult to detect some food soils
 - Need to determine background ATP levels at facility


Non-Specific Methods: Total Protein

- Cleaning effectiveness
- Different companies and formats available
- Advantages
 - Rapid (< 5 min)</p>
 - Less expensive than ELISA
 - Measures protein

Disadvantages

 Measures all proteins, not only from allergenic food

???

Detection of Soy Products in Solution

Soy Product	Method of Detection	Amount of soy product in solution (µg/mL)					
		0	100	250	500	1000	2500
Soy flour	ELISA 1	-	+	+	+	+	+
	ELISA 2	-	+	+	+	+	+
	Conventional ATP	-	+	+	+	+	+
	Sensitive ATP	-	+	+	+	+	+
	Total protein	-	+	+	+	+	+
Soy milk	ELISA 1	-	-	-	-	-	-
	ELISA 2	-	-	-	-	+	+
	Sensitive ATP	-	-	-	-	-	+
	Conventional ATP	-	-	-	-	-	-
	Total protein	-	+	+	+	+	+
Soy-based Infant formula	ELISA 1	-	-	-	-	-	-
	ELISA 2	-	-	-	-	-	-
	Sensitive ATP	-	-	-	+	+	+
	Conventional ATP	-	-	-	-	-	-
	Total protein	-	+	+	+	+	+

Visual Inspection

- Most common method for validating/verifying cleaning procedures
- First step in determining if equipment is clean
- Points for inspection
 - Flat surfaces
 - Difficult to clean areas
 - Areas above processing zone

Advantages

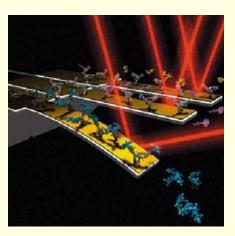
- Does not require lab equipment/inexpensive
- Rapid

Disadvantages

- Depends on accessibility, lighting, surface, etc.
- Limited to accessible equipment
- Does visually clean = allergen clean?

Examples of "Visibly Dirty" Surfaces

Visual Inspection- Milk on Stainless Steel Plates


Methods in Development

- Multiplex DNA and immunochemical methods
 - LC-MS and LC-MS/MS
 - Spectroscopic methods
 - Mid-IR fiber optics
 - Real time
 - Can be used to detect different organic analytes

Biosensors

- Receptor and transducer that results in optical signal
- Surface Plasmon Resonance (SPR)
- Real-time, fast, automated

Conclusions

- Many tools are available for detection of allergens or allergenic foods
- Immunochemical methods the most common
- Choice of method depend on specific use, type of food matrix, and other factors
- Need to conduct "in-house" validation
- More than one method may be needed
- More work is needed to understand the chemical properties of food allergens- better extraction and detection
- There is a need for reference standards so that methods can be evaluated and compared