Development and Validation of In Vitro Safety Assays for Dietary Supplements and Foods

Yitong Liu ¹, Wei Liu ¹, Thomas J. Flynn ², Liangli Yu ¹,

¹ Department of Nutrition and Food Science, University of Maryland, College Park; ²Office of Applied Research and Safety Assessment, CFSAN (Laurel), FDA

- **❖** Dietary supplement usage is highly prevalent in the United States: 68% of American adults reported use of dietary supplement products.
- Most dietary supplements are produced, sold, and consumed without strict regulations.

Safety Concerns

- ➢ liver injury is one of the most serious safety concerns for drugs, food additives, food contaminants, and dietary supplements.
- Potential Food-Drug Interactions mediated by Liver

Methods and Materials

Study

- **Toxicity Assays:** Oxidative stress, Mitochondrial permeability and P-gp regulation, CYP450 1A, 2B/3A induction, Steatosis/phospholipidosis, DNA.
- **Compounds and Extracts tested:** EGCG, NDGA, Quercetin, Catechin, Rutin, *P*-Coumaric acid, Gallic acid, Daidzein, Tannic acid, Ferulic acid, Rosmarinic acid, Epicatechin, Caffeic acid and Naringin; Peppermint leaves, Thyme, Juniper berries, Cinnamon extracts, Green tea extracts.

Study I – Oxidative stress in HepG2/3A cells

"**", P<0.01; "*", P<0.05

EGCG, NDGA, Gallic acid and Tannic acid dramatically (2 - 6 fold) increased oxidative stress at 50 μ g/mL, while quercetin increased by ~ 50% compared with the control.

All of the tested extracts exhibited up-regulation effect of oxidative stress on HepG2/3A cells.

Study I – Mitochondrial permeability and/or P-gp regulation

EGCG, NDGA, gallic acid, daidzein and tannic acid can decrease Rhodamine 123 uptake by 19%~28%, suggesting their effects on mitochondrial membrane depolarization or induction of P-gp in HepG2/3A cells.

Peppermint, cinnamon and green tea extracts can decrease Rhodamine 123 uptake by ~50%.

Study I – CYP1A induction in HepG2/3A cells

Six of fourteen tested compounds can induce CYP1A in the order of tannic acid > NDGA > EGCG > quercetin > gallic acid > rutin, and all of seven tested extracts can dramatically induce CYP1A activity in vitro.

Study I – CYP2B and/or 3A induction in HepG2/3A cells

Among pure compounds, daidzein can induce CYP2B and/or 3A by 78% compared with control, while quercetin can inhibit CYP2B and/or 3A activity by 54%. For extracts, peppermint, thyme and juniper berries can significantly inhibit CYP2B and/or 3A by 54%-87%, while cinnamon can induce CYP2B and/or 3A by 55%.

Study I – Cellular neutral lipids in HepG2/3A cells

"**", P<0.01; "*", P<0.05

Daidzein, quercetin and coumaric acid, as well as juniper berries, cinnamon and green tea-3 extracts increased the accumulation of neutral lipid in HepG2/3A cells, which may lead to a potential steatosis or "fatty liver".

Study I – Cellular polar lipids in HepG2/3A cells

"**", P<0.01; "*", P<0.05

Three of fourteen tested compounds (quercetin, coumaric acid and daidzein) can slightly increase polar lipid on HepG2/3A cells membrane, implying potential phospholipidosis.

Study I – Total DNA content on HepG2/3A cells

Total DNA contents were decreased by NDGA, quercetin, thyme, juniper berries, cinnamon and green tea -1, -2 treatment.

"**", P<0.01; "*", P<0.05

Study I – summary

	Endpoint Assays								
Chemical	Oxidative	Mitochondrial	CYP1A	CYP2B/	Neutral	Polar	DNA		
	Stress	Permeability/P-gp	CYPIA	3A	Lipid	Lipid	DNA		
EGCG	+	+	+						
NDGA	+	+	+				_		
Quercetin	+	+	+	_	+	+	_		
Catechin	_								
Rutin		+	+						
Coumaric acid	_				+	+			
Gallic acid	+	+	+						
Daidzein		+		+	+	+			
Tannic acid	+	+	+						
Ferulic acid	_				-	_			
Rosmarinic acid									
Epicatechin					_	_			
Caffeic acid	+				_	_			
Naringin					_	_			

Among pure compounds, EGCG, NDGA, quercetin, gallic acid, daidzein and tannic acid display most potent biological effects in HepG2/3A cells.

Study I – summary

	Endpoint Assays								
Extracts	Oxidative Stress	Mitochondrial Permeability/P-gp	CYP1A	CYP2B/ 3A	Neutral Lipid	Polar Lipid	DNA		
Peppermint	+	+	+	_		_			
Thyme	+		+	_		_	-		
Juniper berries	+		+	_	+		_		
Cinnamon	+	+	+	+	+		-		
Green tea-1	+	+	+				-		
Green tea-2	+	+	+				_		
Green tea-3	+	+	+		+				

For dietary supplement extracts, peppermint, thyme, juniper berries, cinnamon and green tea extracts all display potent biological effects in HepG2/3A cells.

Conclusion

In vitro tests may provide a rapid means to identify dietary supplements with potential to cause undesired liver side-effects and supplement-drug interactions.

