

Risk Assessment and Decision-Support Tools in Food Safety

Greg Paoli Principal Risk Scientist, COO

JIFSAN Advisory Council Annual Symposium April 27, 2010

Overview

Drivers Behind Increased Use of Tools

- Examples of Tools
 - JEMRA applications
 - iRisk
 - Impacts of Delays in Outbreak Detection
 - Public Health Preparedness
- A Glimpse into the Future

Drivers toward Increased Use of Modelling across Public Health Fields

- Reference to a 'risk-based' rationale for decision-making is increasingly common worldwide
- Increased attention to roles and accountability
 - Seeking more transparency from expert bodies
- More recent
 - World Trade Organization
 - Enabling Legislation of many Agencies
 - Reorganization of Inspectorates
 - ISO 31000: Risk Management Standard

Procedural Rationale for Formal Tool Development

- Management of Overwhelming Complexity
 - Multi-hazard, Multi-pathway, Multi-agent
 - Multi-outcome, complex event sequences
- Maintaining Focus on Avoiding Rare, But Major or Catastrophic Events
- Common Interdisciplinary Language
- Links to the Appropriate Toolboxes:
 - Decision Sciences
 - Risk and Reliability Sciences

Means-Based Rationale for Formal Tool Development

- Societal expectations for the application of information technology and knowledge are growing exponentially.
- The toolbox for rapid integration of data and knowledge from diverse sources is now a standard part of information technology
- Web-based tools remove many technical barriers

Outcome-based Rationale for Formal Tool Development

- Primarily, when there is a need to weigh exposure to risk against beneficial (desirable) activities or products
- Meeting the "Reasonable Person" test
 - "shall take reasonable steps to avoid..."
 - "shall ensure to a reasonable level of certainty..."
 - "safe in reasonably foreseeable conditions..."
 - "inspected at such frequencies as deemed necessary to ensure safe operation ..."

Examples of Tools

- JEMRA applications
- iRisk
- Impacts of Delays in Outbreak Detection
- Outbreak Preparedness

JEMRA Applications

- Cronobacter sakazakii in powdered infant formula
- Microbiological Sampling Plan Analysis Tool
- Risk Management Tool for Control of Salmonella and Campylobacter in Poultry

Risks in Powdered Infant Formula

Preparation Methods		
Method Name (Please use this table	to add, remove and update methods) 🥄	
Current NICU Guidelines	Update Name	Remove
Proposed NICU Guidelines	Update Name	Remove
	Add	

Chicken Production Risk Management Tool

- A risk management simulation tool based on the Proposed Draft Guidelines for Control of Campylobacter and Salmonella spp. in Chicken Meat
- Can describe the complete production-to-consumption process flow, using different process types
- Computes the residual risk between a baseline process flow and a process flow applying selected interventions

Chicken Production Risk Management Tool

Weighted Residual Risk of all Paths: 0.16

iRisk

• Two main objectives:

Rapid Comparative Risk Assessment

Knowledge Management

iRisk

Web-based risk assessment workspace

- User Interface
- Relational Database
- Computational Tool
- Report Generation
- Library and Sharing Features

iRisk

iRisk BETA						Lo	gged in as: truth	man@riskscienc	esint.com <u>Logout</u>		
iRisk Home	Demonstration										
Manage Repositories	Risk S	Risk Scenario Sort by: [Scenario Name 💌 View: 🛛 All			New Scenario help		
Manage Account	Run		Scenario	Food	Hazard	Process Model	Consumption Model	Dose Response Model	DALY Template		
Manage Users	Edit	-	Aflatoxin in pb,	Peanut Butter	Aflatoxin B1	Hypothetical model	Peanut Butter	Non-threshold linear	Liver cancer		
User Guide	<u>Lon</u>		model	<u>r canac batter</u>	Andtoxintor		population	for Aflatoxin B1	<u>erver concer</u>		
Contact Support	Edit		Ciguatoxin in Fish	Fish	Ciquatoxin	<u>Ciquatoxin in Fish</u>	Consumption of Fish	Ciquatoxin (acute) (general population)	<u>Placeholder</u>		
Demonstration 😵						Listeria in Soft	Soft Rinened	Exponential Dose			
🔁 Hazards	Edit		Listeria in Soft Ripened	Soft Ripened	Listeria	Ripened Cheese	<u>Cheese</u>	Response for Listeria in Elderly	Listeriosis in the Elderly (60 and		
📜 Foods			Cheese in Adults 60+	Cneese	monocytogenes	(Gombas et al., 2003; Combase)	Elderly US Adults	Population (FAO/WHO)	over) (RIVM)		
Dose Response Models						1000000000	Soft Ripened	Exponential Dose			
Consumption Models	Edit		Listeria in Soft Ripened	Soft Ripened	Listeria	Listeria in Soft Ripened Cheese	Cheese Consumption by US	Listeria in	Listeriosis in the General Population		
Drocess Models			Population	Cheese	monocytogenes	(Gombas et al., 2003; Combase)	Intermediate Age Population	Intermediate Age Population	(RIVM)		
🔁 Health Endpoints			-				Coft Discord	(FAO/WHO)			
DALY Templates	1.1	_	Listeria in Soft Ripened	Soft Ripened	Listeria	Listeria in Soft Ripened Cheese	Cheese	Response for	Listeriosis in the		
Population Groups	Edit		Cheese in the Perinatal Population	Cheese	monocytogenes	(Gombas et al., 2003; Combase)	Consumption by Perinatal Population	Listeria in Perinatal Population	Perinatal Population (RIVM)		
Demographic Templates						Salmonella in Peanut	orus	(FAO/WHO)			
Risk Scenarios	Edit		Salmonella in peanut butter, DR specific for	Peanut Butter	Salmonella	Butter, Post-	Peanut Butter consumption by US	Dose response for Salmonella in peanut	Salmonellosis in the general population		
🐴 Risk Scenario Groups			peanut butter			contamination	population	butter	(Scallan et al., 2011)		
Copy Repository		_	Salmonella in Peanut			Salmonella in Peanut Butter, Post-	Peanut Butter	Beta Poisson for	Salmonellosis in the		
S Accounts	Edit		Butter, General Population	Peanut Butter	Salmonella	roasting contamination	consumption by US population	Salmonella (FAO/WHO, 2002)	<u>(Scallan et al., 2011)</u>		
								Elemente in erang			
Peer Review 😵								ciements in orang	s are not complete.		
Repository 1 😵						_					
Truthman						⊻ In	clude details	Rank Selected	Sum Selected		
						Override const	imption model for	acute chemical an (10,000,00	a microbial hazards 0 servings of 100g)		

	Process Model: Listeria during production of Soft Cheese									
	Process Stages									
(ISK	Ini Prevaler	i tial Fix nce: Val	ed Initial Concer ue cfu/g or log	Initial Concentration (Microbial: log cfu/g or log pfu/g; Chemical: g/g):						
	Va	lue: 0.0	0273	Minimum:						
		e: 0	0							
		1.57	1.57							
	Unit Mass: 5E6 (g) Reference/ Rationale:									
	Process	New Stage								
	Seq	uence	Stage Name	Process Type	Mass(g)					
	Edit 2		Combining Milk in Tanker	Pooling	22E6	ŧ	¥			
	Edit ³		Pasteurization	Decrease	No change	ŧ	¥			
	Edit 4		Post-pasteurization Contamination	Increase (addition)	No change	ŧ	¥			
	Edit 5		Draining	Evaporation/Dilution	Computed	4	¥			
	Edit 6		Portioning	Partitioning	227	ŧ	¥			
	Edit 7		Ripening	Decrease	No change	ŧ	¥			
	Edit 8		Storage	Increase (growth)	No change	ŧ	¥			

iRisk Sample output

	A	k	В	С	D	E	F	G	Н	- I -	J
1	Sensi	vity /	Analysis Re	eport for Sa	almonella	in Peanut E	Butter, Ger	neral Popu	lation		
2											
3	SA1		with Proce	ess Model ·	- Initial Co	nditions: Ir	nitial Preva	lence: Fixe	ed Value (N	/alue:5.5E	·6)
4	SA2		with Proce	ess Model ·	- Initial Co	nditions: Ir	nitial Preva	lence: Fixe	ed Value (N	/alue:5.5E-	-5)
5	SA3		with Proce	ess Model ·	- Initial Co	nditions: Ir	nitial Preva	lence: Fixe	ed Value (N	/alue:5.5E-	-4)
6											
7	Scena	ario	Final Cond	Final Prev	Mean Ris	Eating Occ	Total DAL	Annual DA	DALYs per	EO	
8	SA1		0.86	4.90E-06	4.20E-07	1.70E+10	130	130	7.90E-09		
9	SA2		0.86	0.000049	4.20E-06	1.70E+10	1300	1300	7.90E-08		
10	SA3		0.86	0.00049	0.000042	1.70E+10	13000	13000	7.90E-07		
11											
12											
13						-					
14						Annu	ual DAL	Ys			_
15											_
16		140	00								
17		140									
18		1200	00							_	
19		100	00							_	
20		80	00								
21		60	00							-	
22		40	00								
23		20	00								
24			0 +	×		I					
25				SA1			SA2			SA3	
26											
07											

Web-based Dissemination

Web-based Dissemination

Modeling the Public Health System Response to a Terrorist Event

NATIONAL CENTER FOR FOOD PROTECTION AND DEFENSE A HOMELAND SECURITY CENTER OF EXCELLENCE

PRIMARY PRODUCTION > HARVEST > TRANSPORTATION > STORAGE > PROCESSING > DISTRIBUTION > RETAIL/FOOD SERVICE > CONSUMER

What is the tool for?

- Enables users to explore the role of components of the public health system in response to food contamination events
- Numerous components can be explored, and include:
 - Health system response components
 - e.g. likelihood to investigate causative agent, time it takes elucidate causative agent etc.
 - Protocols regarding public advisory issue
 - Impact of consumer compliance with advisory
 - Impact of speed of removal of contaminated product from the food chain

NATIONAL CENTER FOR FOOD PROTECTION AND DEFENSE A HOMELAND SECURITY CENTER OF EXCELLENCE

Data Entry

Bacillus Anthracis			
	Minimum	Most Likely	Max
Likelihood of symptoms given ingestion	45	50	65
Likelihood seek treatment	80	92	97
Likelihood aetiology is investigated	80	85	90
Likelihood reported given cause	92	95	99
Delay to symptoms given ingestion	2	3	4
Delay to seek treatment	1	2	3
Delay to identification of causative agent	2	4	5
Delay to report	0.5	1	2
Number of confirmed cases till advisory issued	5		
Number of confirmed cases in 1 region before issue of advisory	5		
Number of days from advisory to complete removal of suspected source from market	10		
Compliance of consumer with advisory	75	85	90

NATIONAL CENTER FOR FOOD PROTECTION AND DEFENSE A HOMELAND SECURITY CENTER OF EXCELLENCE

Product Type Selection

NATIONAL CENTER FOR FOOD PROTECTION AND DEFENSE

A HOMELAND SECURITY CENTER OF EXCELLENCE

Example Results

July 8, 2007 08:08:28

Simulation of Health Care System Preparedness for Outbreaks

- Five years
- \$2+ billion
- How do we know if we are prepared?
- What are the best uses for future funding?

Examples of Policy Questions

- How does buying more equipment/supplies affect the number of patients who receive appropriate treatment?
- How do changes in triage and treatment protocols affect the number of patients who receive appropriate treatment?
- Does using exclusion criteria increase the number of patients who receive appropriate treatment?

Present State

- Tool Development Spans the Full Food Safety System
 - Scientific Databases
 - Single Food-Hazard Combination Tools
 - Multiple Hazard, Single Food Tools
 - Comparative Risk Assessment Tools
 - Activity Specific Tools (sampling)
 - Role of Public Health System in Food Safety

Poorly integrated, lacks a master architect

Near Future State

- Tighter integration of data and information into public domain tools
 - Sampling of raw materials,
 - predictive microbiology,
 - role of indicator organisms,
 - rapid risk assessment,
 - end product sampling,
 - consumer behavior data
 - consumption models

A Few Questions

- What would REACH for food safety look like?
- How many different ways are there to demonstrate that a food is safe?
- Which is easier:
 - Demonstrating appropriate evidence of expenses from a trip taken two years ago
 - Providing a report demonstrating the safety case for a food product that you are responsible for.

Future State

Knowledge Management for Food Safety

- Tools to Support the Development and Management of a formal safety case for any commodity or food
- Goal: Not just safe but "Known to be Safe"
- "Epistemic audit "

Future State

Systems-Level Characterization of the whole Food Safety System

- Inspections,
- Audits,
- ♦ HACCP,
- Contractual Requirements,
- Communications