

Epidemiology of weak associations The case of nutrition and cancer

Paolo Boffetta Icahn School of Medicine at Mount Sinai New York NY

Causality in epidemiology

- Epidemiology can lead to the identification of specific components that explain the causes of cancer at the population level within a multi-causal framework
- Observational nature of most epidemiological investigations
 - potential role of systematic error (bias and confounding)
- Causal inference in epidemiology requires systematic error to be excluded
 - in addition to exclusion of random error and coherence with other lines of evidence

Mount Sources of systematic error

• Bias

- selection bias
 - groups of study subjects are not comparable
- information bias
 - measurement error in exposure, outcome or covariates
- reporting bias
 - published results represent a selected set
- Confounding
 - an extraneous factor explains the association between exposure and outcome

Mount Hill's guidelines for causality

- In 1965 Hill proposed a set of guidelines, derived from those used in a 1964 US SG Report on Health Effects of Smoking to establish the causal nature of the association between tobacco smoking and lung cancer
- Hill's guidelines have become the paradigm of criteria to evaluate the causal nature of results of observational studies
 - several modifications have been proposed since

Hill's guidelines

- Strength of Association
- Temporality
- Consistency
- Theoretical Plausibility
- Coherence
- Specificity in the Causes
- Dose Response Relationship
- Experimental Evidence
- Analogy

Strength of association

- The association between a risk (or protective factor) and cancer is measured by comparing the occurrence of cancer in groups defined according to exposure to the risk factor
 - ratio of disease risk/odds/rate in exposed and unexposed
- The stronger the relationship between the independent variable and the dependent variable, the less likely it is that the relationship is due to an extraneous variable

Relative risk – Scenario 1

	Exposed	Non-exposed
Total	10,000	10,000
Cases	1,500	100
Non-cases	8,500	9,900
Risk	0.15	0.01

Relative risk 0.15/0.01 = 1595% confidence interval 12.3, 18.3

Relative risk – Scenario 2

	Exposed	Non-exposed
Total	10,000	10,000
Cases	150	100
Non-cases	9,850	9,900
Risk	0.015	0.01

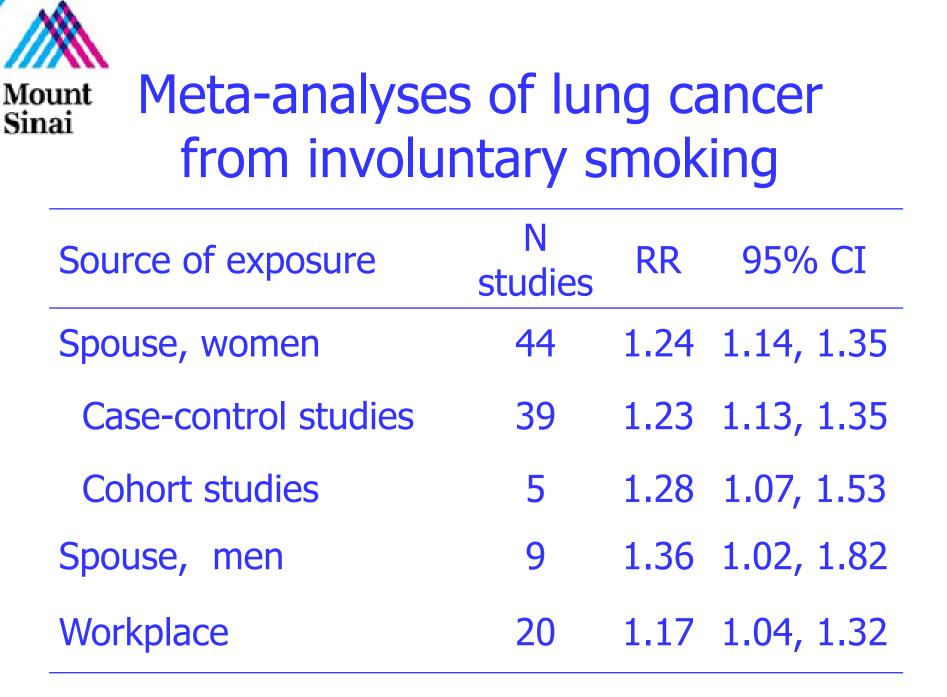
Risk ratio 0.015/0.01 = 1.5 95% confidence interval 1.17, 1.93

Weak associations

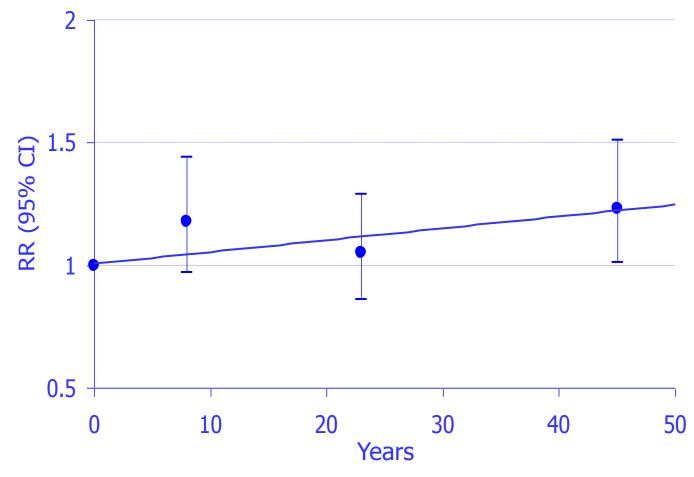
- Intuitively, we lend more credibility to 'strong' than to 'weak' associations

 where is the boundary?
- Weak associations are more likely to be explained by chance, bias and confounding (and their combinations)

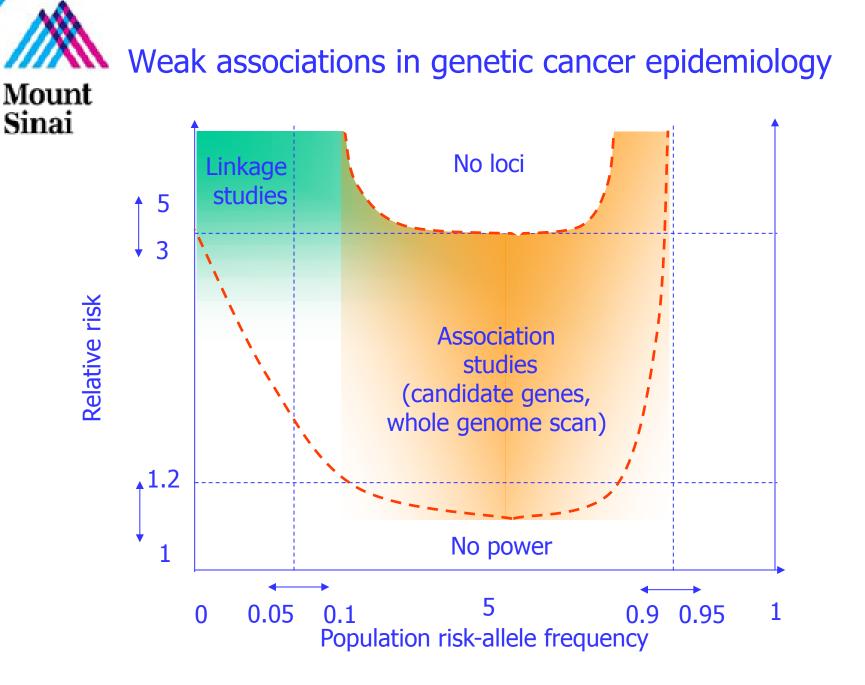
^{Mount} Sinai Examples of 'old' carcinogens

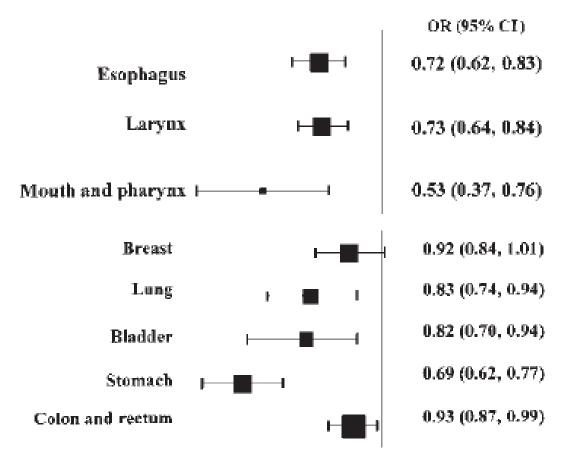

Agent	Target organ	RR
Sunlight	Skin	3
Tobacco chewing	Oral cavity	4
Tobacco smoking	Lung	15
Alcohol drinking	Oral cavity	5
Aromatic amines	Bladder	8
Asbestos	Lung	5

WHO, 1964


^{Mount} Sinai Examples of 'new' carcinogens

Agent	Target organ	Year	RR
Tobacco smoking	Liver	2004	1.6
Involuntary smk	Lung	2004	1.25
Formaldehyde	NPC	2007	1.3
Alcohol drinking	Breast	2007	~1.2
1,3 Butadiene	Lymphohem.	2008	1.15

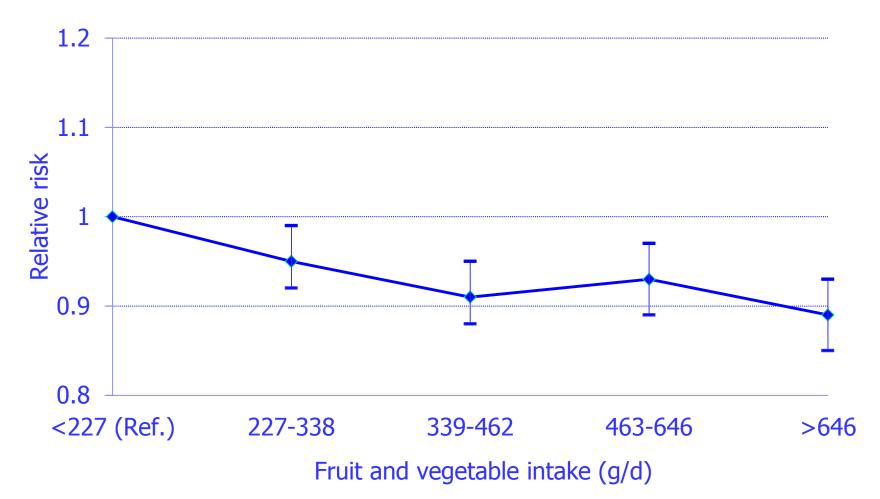



Mount Sinai Effect of duration of spousal exposure Pooled analysis of case-control studies

Brennan et al., 2004

Meta-analysis of case-control studies of Sinai fruit intake and cancer risk

Riboli & Norat, 2003



Fruit and vegetable intake and cancer risk - the EPIC study

					-			
		Men			Women			Overall
Food group	n	HR (95% (CI)*	n	HR (95% CI)*	n	HR (95% CI)*
Vegetable intake								
Continuous (100 g/d, uncalibrated) 9604	0.98 (0.96 to	o 1.00)	21000	0.98 (0	.97 to 0.99)	30604	0.98 (0.97 to 0.99)
Continuous (100 g/d, calibrated)	9604	1.02 (0.97 to	o 1.07)	21000	0.95 (0	.92 to 0.98)	30604	0.97 (0.94 to 0.99)
Fruit intake								
Continuous (100 g/d, uncalibrated)) 9604	0.98 (0.97 t	o 1.00)	21000	1.00 (0	.99 to 1.01)	30604	0.99 (0.98 to 1.00)
Continuous (100 g/d, calibrated)	9604	0.98 (0.96 t	o 1.01)	21000	0.99 (0	.97 to 1.01)	30604	0.99 (0.98 to 1.00)
Group of	cancers			ssociate R (95% C			sociated, 5% CI)*	-
smol Numbe Fruits a	on with to king† r of cance nd vegeta 00 g/d, con	r cases bles	0.92	5034 2 (0.90 to	0.95)		570 97 to 1.00)	

Boffetta et al., 2010

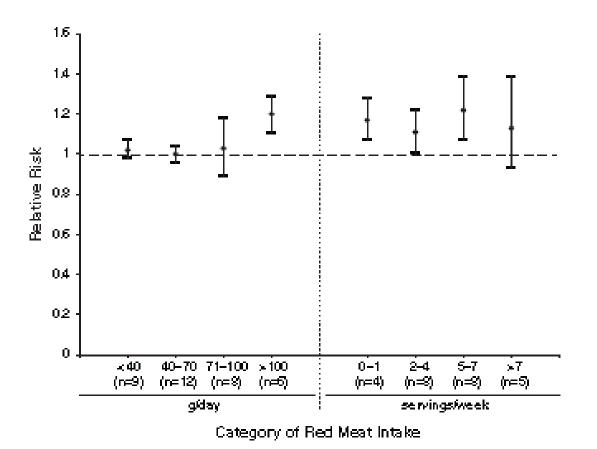
Mount Relative risk of cancer for fruit and vegetable intake (categorical analysis)

Boffetta et al., 2010

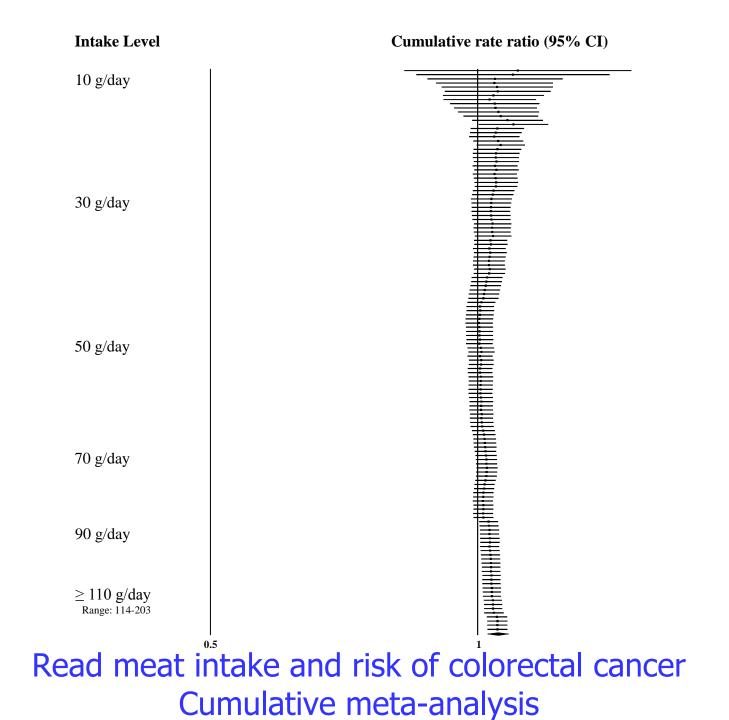
Mount Strength of the evidence of a reduction in Sinai cancer risk from high vegetable and fruit intake

Evidence	Vegetables	Fruits
Convincing	Oral, oesophagus, lung, stomach, colon, rectum	Oral, oesophagus, lung, stomach
Probable	Larynx, pancreas, breast, bladder	Larynx, pancreas, breast, bladder
Possible	Liver, cervix, ovary, endometrium, prostate, kidney, thyroid	Cervix, ovary, endometrium, thyroid

MountHigh vegetable and fruit intake and reduction in Sinai cancer risk – WCRF 2007


Evidence	Vegetables	Fruits
Convincing	-	-
Probable	Oral, larynx, esophagus, stomach	Oral, larynx, esophagus, lung, stomach
Possible	Lung, colorectum, ovary, endometrium	Pancreas, liver, colorectum

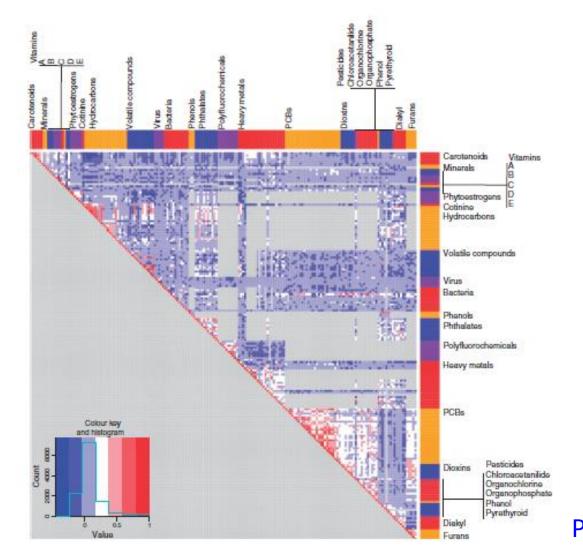
Meta-analysis of risk of stomach cancer Mount from high intake of vegetables and fruits, Sinai by study design


	Case-control			Cohort		
	RR	95% CI	Ν	RR	95% CI	Ν
Vegetables	0.70	0.62-0.79	21	0.98	0.91-1.06	9
Fruits	0.67	0.59-0.76	29	0.95	0.89-1.02	9

WCRF, 2007

Mount Sinai

- Exposure misclassification
 - repeated measurements
 - intra-individual variation
 - use of biomarkers
 - biologically relevant temporal interval
 - early-life nutrition
- Residual confounding
 - correlations between foods and nutrients
- Level of analysis
 - nutrients, foods, patterns



Mount Sinai Experimental vs. observational studies Trials of β-carotene and lung cancer mortality

Study	<i>Setting, population, age</i>	Follow-up	Dose	RR	CI
Blot et al., 1994	Linxian, China; 29,584, 40-69	1986-91	15 mg	0.55	0.26-1.14
ATBCCPSG 1994	Finland; 29,133 m smokers, 50-69	1985-93	20 mg	1.18	1.03-1.36
Hennekens et al., 1994	USA; 22,071 m physicians, 40-84	1982-95	25 mg	0.93	NA
Omenn et al, 1994	USA; 18,314 smk/asbestos workers, 45-74	1985-95	30 mg	1.28	1.04-1.57

Correlation between 188 nutritional, microbial and environmental biomarkers NHANES

Patel et al., 2012

Food safety The epidemiologic perspective

- Epidemiology cannot provide definite evidence for lack of risk
- Even if the absence of an association, positive results are generated because of chance and bias
- Role of critical reviews and meta-analyses
- Need for new guidelines

Toxicology and Epidemiology: Improving the Science with a Framework for Combining Toxicological and Epidemiological Evidence to Establish Causal Inference

Hars Olov Adami,*† Sir Colin L. Beny,‡ Charles B. Breckenridge,§ Lewis L. Smith,**?**] James A. Swenberg,**]**] Dimitrics Trichonoulos.* Noel S. Weiss,**]] #** and Timothy P. Paston/§¹

> TOXICOLOGICAL SCIENCES 122(2), 223-234 (2011) doi:10.1093/toxsci/kfrl13 Advance Access publication May 10, 2011

Conclusions

- Weak associations represent a major challenges to epidemiologic research
 - environmental, genetic, nutritional epidemiology
- Way forward
 - increase statistical power via large studies and consortia
 - use of valid study design
 - improvement in exposure assessment
 - integration of knowledge from biology
- Proactive role of food industry

Acknowledgements

- Peter Boyle, Philippe Autier, IPRI
- Nat Rothman, NCI
- Joe McLaughlin, Bill Blot, Bob Tarone, IEI
- Dominik Alexander, Exponent
- John Ioannidis, Stanford U.