

Spectroscopic Fingerprinting Techniques for Verifying Food

> Dr Gerard Downey Teagasc Ashtown Food Research Centre Dublin 15, Ireland

> > gerard.downey@teagasc.ie

Background

- EU-funded TRACE project: 2005 to 2009
- Workpackage 2: Fingerprint and profiling methods
- Foods studied:
 - Olive oil
 - Honey
 - Trappist beer
 - Aged beef

Initial considerations

Verification:

Confirmation of a claim made on the food

- May relate to :
 - Geographic origin eg Corsican honey (PDO)
 - Brand name eg Rochefort 8° Trappist beer
 - Processing eg beef aged for 21 days
- Not identificationie what is this?

Question formulation

- Precision in defining the question to be answered at the outset is key to maximising the likelihood of a successful outcome eg
 - This olive oil claims to be extra virgin from the Kolymvari PDO region of Crete is it?

This beer claims to be Trappist Rochefort 8° from Belgium – is it?

Analytical strategy

- Unlike conventional chemistry, fingerprint spectroscopic methods do not rely on the detection of a limited number of analytes which indicate identity or adulteration
- They record an analytical response to a large number of variables and manipulate these mathematically to generate a fingerprint for a specific sample type
- Derived fingerprints are applied to analytical responses measured on unknown samples to indicate whether they match those previously developed

Assumptions

Spectral data contains useful and relevant information with which to solve the problem

Samples used to generate models span most of the variability likely to be encountered in the future

Instrumental measurements are precise and reproducible

Multivariate Method Options

Classification techniques

- Suitable for closed verification systems
 - Limited and defined number of possible sample types
 - Discriminant PLS
- Class-modelling techniques
 - Suitable for open verification systems
 - Unlimited number of possible sample types
 - SIMCA, POTFUN, UNEQ

Classification Techniques

Classification techniques build a delimiter between the classes so that they always assign a new object to the class to which it most probably belongs

(even in the case of objects extraneous to all the classes studied)

Class Modelling Techniques

Class modelling techniques build a model for each class studied and then evaluate the fitting of all objects to each model. For this reason, for any given object there is the possibility of assignment to more than one class or to none of the classes studied.

Real World Situations

Classification

Class Modelling

How Do We Assess Model Performance?

Classification Techniques

For each class:

 $\% correct classifications = \frac{objects of training set correctly classified}{total objects of training set} \cdot 100\%$

% correct predictions = $\frac{\text{objects of validation set correctly classified}}{\text{total objects of validation set}} \cdot 100\%$

How Do We Assess Model Performance?

Class Modelling

For each class:

%sensitivity = $\frac{\text{objects of the modelled class correctly accepted by the model}}{\text{total objects of the modelled class}} \cdot 100\%$

%specificity = <u>objects</u>, extraneous to the modelled class, correctly refused by the model total objects extraneous to the modelled class

Incomplete Separation

Classification

Class Modelling

Implications

Only if EACH object in class modelling is accepted by ONE and ONLY ONE class model

will

% CORRECT CLASSIFICATION and SENSITIVITY have the same value.

In all other cases, they will differ.

Practical Considerations and Risk

- Ideally, we achieve 100% correct classification and sensitivity but usually we do not.
- What constitutes the greater risk incorrect classification of true product or incorrect classification of untrue product?
- How do we adjust class boundary limits to address this issue?

Worked Example

Trappist Rochefort 8° beer from Belgium: brand identity claim

Issue outline

- Trappist beers originally brewed only by Trappist monks
- Only they are permitted to use a Trappist logo as a mark of authenticity

- Rochefort is a specific beer brand; available as Rochefort 6° , 8° and 10°
- Can we use fingerprint and profiling methods to confirm the identity of a beer which claims to be Rochefort 8°?

Experimental plan

- Collect samples of Trappist and non-Trappist beers from different production batches
- Samples collected, coded, assembled into sets for each laboratory (5), and distributed by courier
- Beers distributed in two lots 1 in autumn 2008 and 1 just before Christmas.

Beer numbers

		1st study Month 0	Month 6nd stud y	3rd study Month 12
	Rochefort 8°	16	32	16
Trappist beer	Other trappist around 8° (Chimay triple, Archel brune, Westmalle, Westvleteren, Trappe)) + Other trappist (Rochefort 10°, Orval, Chimay dorée)	37	0	37
Other Beers	"special" beers but not trappist (Leffe, Grimbergen, gueuze, Jupiler,…)	67	0	67

Total bottles/ team:

272

Total number of samples sourced: 1165!

Total

120

32

120

Infrared methods – NIR

Raw, transflectance spectra

2nd derivative transflectance spectra

Discriminant Partial Least Squares Regression (PLS-DA) - ideal

Discriminant Analysis - real **Rochefort 8** vs non-Rochefort 8

NIR Data Analysis - hierarchical

NIR data analysis Trappist *vs* non-Trappist

NIR data analysis Trappist *vs* non-Trappist

NIR data analysis Trappist *vs* non-Trappist

NIR data analysis Rochefort *vs* non-Rochefort

NIR data analysis Rochefort8 vs Rochefort 10

Raw spectral data

Trappistes Rochefort

Summary of Results from TRACE Workpackage 2

		% correct classification			
Technique	Actual	Rochefort 8	Non-Rochefort 8	Average	
NIR	R8	-	-	-	
	Non-R8	-	-		
FTIR	R8	-	-	-	
	Non-R8	-	-		
Raman	R8	90.6	9.4	87.2	
	Non-R8	16.2	83.8		
NMR(CSL)	R8	94.6	5.4	87.2	
	Non-R8	20.6	79.4		
NMR(CNR)	R8	100	0	90.5	
	Non-R8	19.0	81.0		
UPLC-QTOF R8		100	0	98.1	
	Non-R8	3.9	96.1		

IR spectroscopy results

		% correct classification				
Technique	Actual	Rochefort	Non-Rochefort	Average		
NIR	Rochefort	78.6	21.4	88.3		
	Non-Rochefort	2.1	97.9			
FTIR	Rochefort	89.7	10.3	94.3		
	Non-Rochefort	4.3	95.7			
		Rochefort 8	Rochefort 10			
NIR	R8	100	0	95.9		
	R10	8.3	91.7			
FTIR	R8	100	0	100		
	R10	0	100			

Class Modelling Results NIR + SIMCA

_										
	Data	#PCs	%	% correct Sensitivity		Specificity				
	treatment		class	ification	-					
_										
	Trappist vs non-Trappist									
			T	Non-T	T	Non-T	Т	Non-T		
	Raw	8	89.1	87.9	81.8	77.3	83.8	85.5		
	Rochefort vs non-Rochefort									
			R	Non-R	R	Non-R	R	Non-R		
_	SNV+	7	100	100	100	100	100	100		
	Rochefort 8° vs Rochefort 10°									
			R8	RIO	<i>R8</i>	RIO	R8	RIO		
	SNV+	4	100	100	93.8	100	100	93.8		

Class Modelling Results NIR + UNEQ

Ι	Data	#PCs	%	correct	Sensitivity		Specificity			
t	treatment classification						-			
	Trappist vs non-Trappist									
			Т	Non-T	T	Non-T	Т	Non-T		
	MSC	10	89.1	84.9	91.8	88.6	28.8	18.2		
	Rochefort vs non-Rochefort									
			R	Non-R	R	Non-R	R	Non-R		
	SNV+	7	100	100	96.4	88.9	92.6	78.6		
	Rochefort 8° vs Rochefort 10°									
			R8	RIO	R8	RIO	R8	RIO		
	SNV+	4	100	100	100	95.8	100	100		

Class Modelling Results NIR + POTFUN

Data	#PCs	% (correct	Sensitivity		Specificity				
treatment		class	ification							
	Trappist vs non-Trappist									
		T	Non-T	T · ·	Non-T	Т	Non-T			
Raw+	13	70.9	77.3	98.2	92.4	7.6	9.1			
		R	ochefort vs	non-Roche	fort					
		R	Non-R	R	Non-R	R	Non-R			
Raw+	5	92.9	96.3	92.9	88.9	51.9	10.7			
 Pochefort 8° vs Pochefort 10°										
		R &	RIO	R8	RIO	R8	RIO			
SNV+	4	93.8	917	100	91 7	917	31.3			
0111		00.0	01.1	100	01.1	01.1	01.0			

- Clear definition of the issue to be addressed is essential at the outset
- Comprehensive experimental design needed
- Variety of multivariate options available
- How to incorporate the element of relative risk
 - How to translate mathematical result into output consumers can understand?

Acknowledgements

- Tony Woodcock, University College Dublin
- Siobhán Hennessy, University College Dublin
- Paolo Oliveri, University of Genoa
- Valentina Di Egidio, University of Milan
- EU Commission for funding
 - FERA/JIFSAN for invitation

