

Tracking Technologies for Agri-Food

Marc Cohen The Institute for Systems Research UMD, College Park MD

Devastating Losses & Economic Cost

\$6.9 billion in medical costs, lost productivity and premature deaths*

- What's next?
- # How to mitigate the risk?

* USDA ERS report "Foodborne illnesses account for about 1 of every 100 U.S. hospitalizations and 1 of every 500 U.S. deaths"

5/14/2009

Marc Cohen

Farm to Fork: What should technology do?

latency

- PulseNet "passive"
 FoodNet "proactive"
- Automate
 - # diagnostics/testing
 - locating/tracking
 - # reporting/alerting
 - database updates
 - prognostics

2006 E. coli in spinach

- **Sept 14:** FDA warning bags of fresh spinach
- Sept 17: FDA warning upgraded fresh spinach & fresh-spinach containing products
- Sept 18: 111 people sick, one infant dies
- <u>Sept 20:</u> CDC announces genetic fingerprint, E. coli 0157
- Sept 29: FDA warning downgraded to specific brands of spinach

Agri-food Complex Lifecycle

Technology Overview

Machine-Readable Codes
Barcodes & Sensor-Imbedded Barcodes
Radio Frequency Identification (RFID) tags
Passive, Battery Assisted Passive & Active
Surface Acoustic Wave Tags (SAW)
Real-Time Location Systems (RTLS)

Agri-food Lifecycle Monitoring

New Barcode Technologies

5/14/2009

Machine-Readable Codes

Barcodes – simple, universal & low cost ($\frac{1}{2}$ cent)

21000 75896 80	UPC-A	Numbers only: 11 + check digit	4 bits/symbol * 11 + 1 = 45 bits	Retail product marking in USA and Canada
9 780978 945619	EAN-13	Numbers only: 13 + check digit	4 bits/symbol * 13 + 1 = 53 bits	Retail products worldwide
ABC123	Code 39, LOGMARS	A-Z, 0-9; Space – . \$ / + %. Extendable	6 bits/symbol * no. symbols (N) = 64 * N	Widely used. US Military. HIBC pharma
	Maxicode	All ASCII characters	7 bits/symbol * 93 symbols = 11904 bits	Developed by UPS. Includes error correction.
	PDF-417	All ASCII characters. Extendable	7 bits/symbol * N = 128 * N bits	Widely used. US Military. Driver's licenses

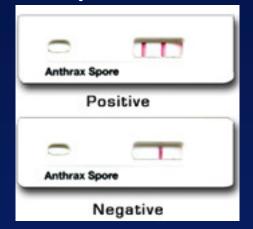
5/14/2009

Sensor-Imbedded Barcodes

Advantages:

- + measure environmental factors
- # record safe handling
- report product safety
- error-free conveyance to
 - databases
- + and more

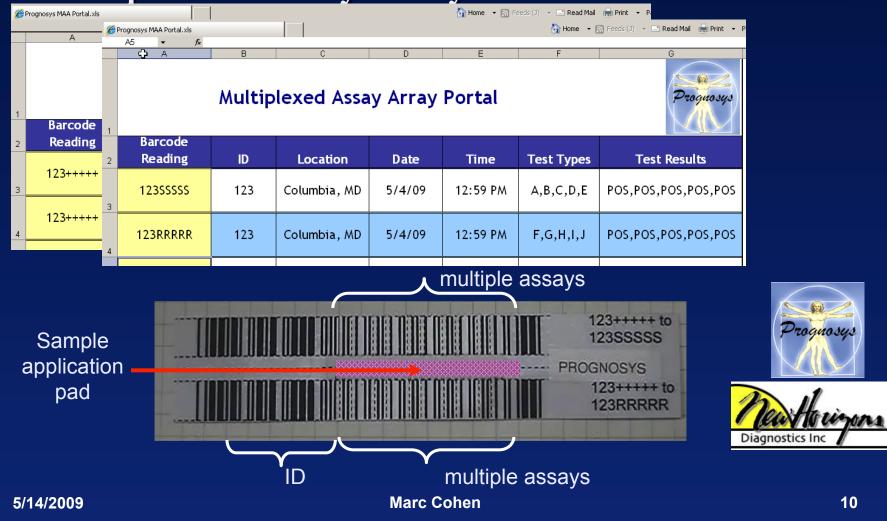
Example: Thermochromic Barcode


source: www.pop-technology.com

Assay-Imbedded Barcode

Traditional lateral flow assays

Assays Imbedded into Barcode Modules

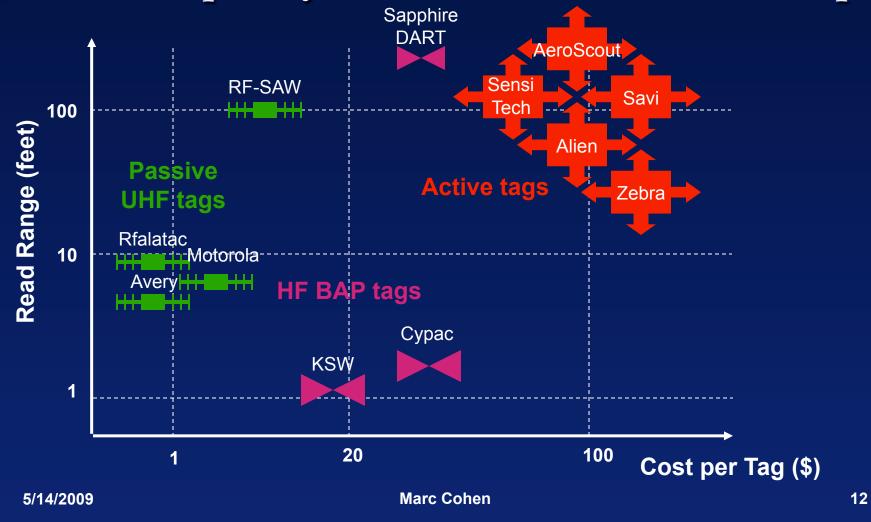


Can be read using a simple barcode reader

Marc Cohen

Multiplexed Assay Array Imbedded Barcodes

Agri-food Lifecycle Monitoring


HHE HH Passive RFID

5/14/2009

Radio Frequency Identification: The Landscape

RFID

Injectable LifeChip LF tag

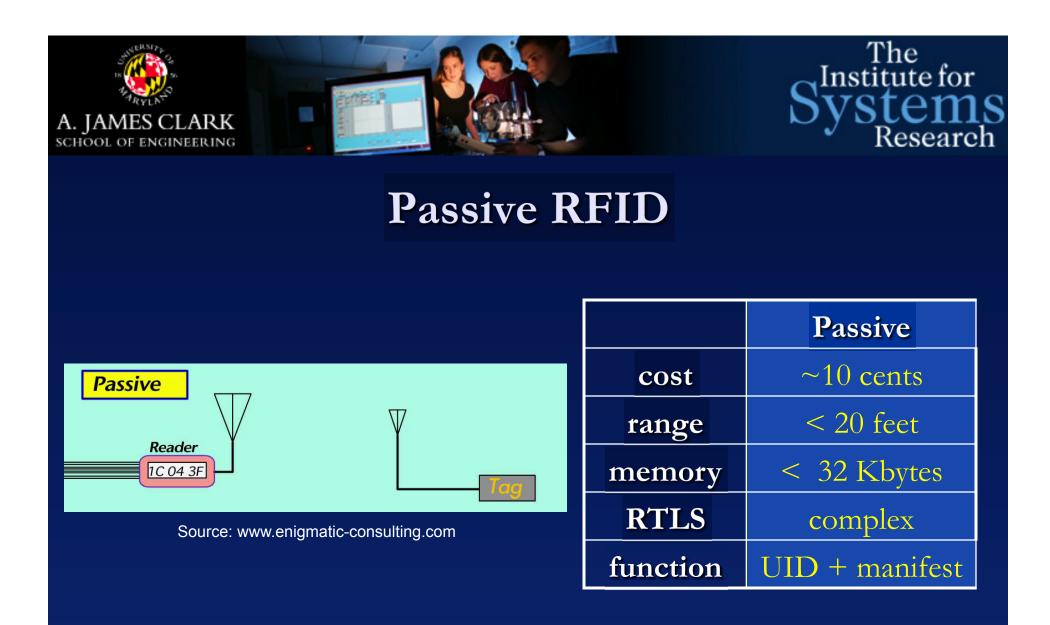
1.2" diameter LF e.Tag by Destron Fearing

Alien "Squiggle" passive tag 4"

1/4"

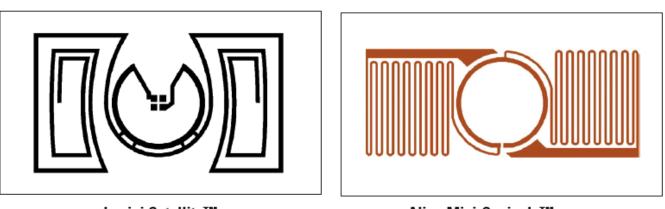
KSW Microtec HF passive tag

1.4" 3"


Intelleflex BAP tags

Marc Cohen

Savi active tag, LF and UHF


RFID Frequency Bands

Band Frequency, Wavelength and Common Usage

Band	Unlicensed Frequency	Wavelength	Common Use
LF	125 – 134.2 KHz	7872 ft	Animal tagging and
HF	13.56 MHz	72.6 ft	keyless entry
UHF	850-950 MHz	1 ft	Smart cards, logistics, item management
ISM	2.4 GHz	0.4 ft	Item management

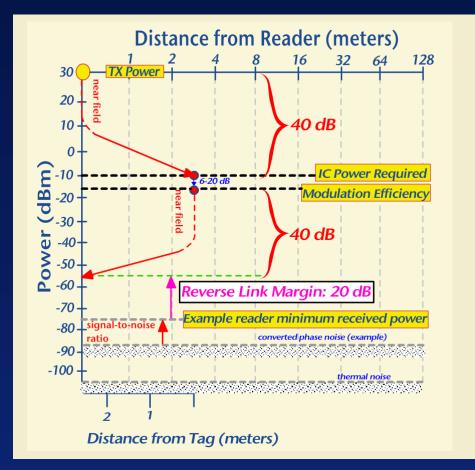
Examples of Dual Use Passive UHF Tags

Impinj Satellite™ Alien Mini-Squiggle™ .70 in. x 1.26 in/18mm x 32mm (inlay dimension) .39 in. x 1.06 in./10mm x 27mm (inlay dimension)

Tags with antenna designs that exploit both magnetic and electromagnetic field coupling, enabling both near and far field reads in a single tag

RFID EPC Classes

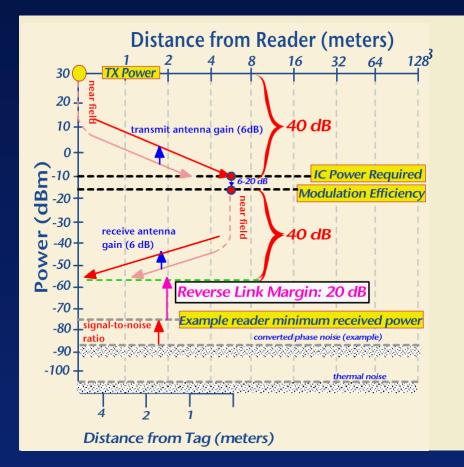
EP	EPC Class Definition		Programming
0		Passive, WORM	manufacturer
1		Passive, WORM	consumer
2		Passive, WMRM	reprogrammable
3		Semi-Passive, WMRM	
4		Active, WMRM	
5		Readers	


Ideal Passive RFID Read Range

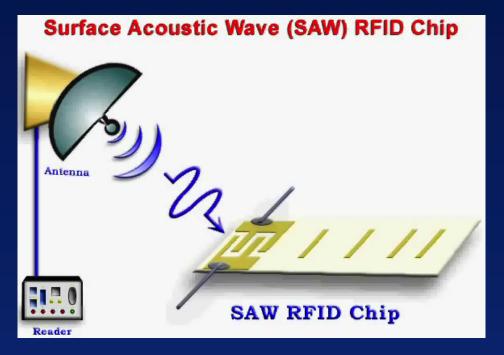
- Pr = 1 watt, Maximum allowable power transmitted by reader
- Gr = 6 dBi, Reader's equivalent isotropic antenna gain
- Gt = 1 dBi, Tag's equivalent isotropic antenna gain
- $\lambda = 0.32$ m, Wavelength for 915 MHz

$$P_{i} = P_{i} \cdot G_{i} \cdot G_{i} \cdot \left(\frac{\lambda}{4\pi d}\right)^{2} = 100 \mu W, \text{ Minimum power received by tag}$$

$$\therefore d_{max} = \frac{\lambda}{4\pi} \sqrt{\frac{P_{i} \cdot G_{i} \cdot G_{i}}{P_{i}}} \approx 5m (16.5 f), \text{ Maximum tag to reader distance}$$


Passive RFID Read-Range

5/14/2009


Antenna Effects

Surface Acoustic Wave RFID Tags

totally passive technology (2.4 GHz)

source: www.rfsaw.com

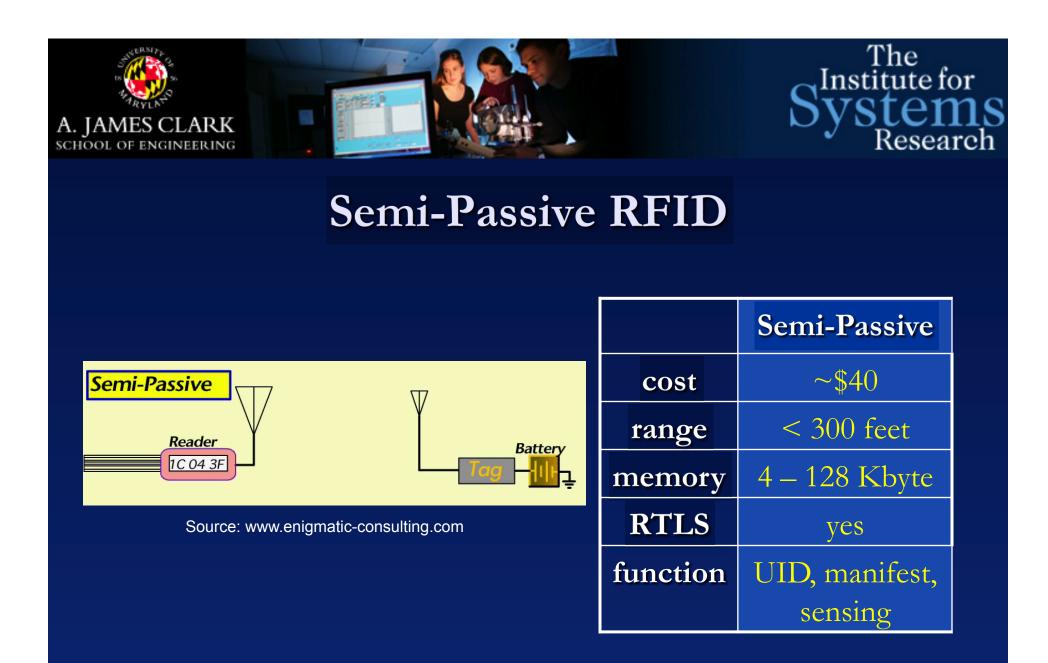
Superior read range (up to 30 meters unobstructed)

Tag location

Temperature measurements

Read-on-Metal/Liquid containers

Gamma Sterilization (>10 M RAD)


Agri-food Lifecycle Monitoring

semi-passive RFID

5/14/2009

Marc Cohen

Semi-Passive RFID Tags

"On-board" battery (battery-assisted passive BAP)

- ⊕ Boosts read range to ~ 300 ft
- Reads around challenging materials
- + Captures and stores (read/write) sensor readings
- Does not transmit data autonomously
 - Only when "pinged" by reader
- Captures and stores data autonomously
 - User defined pre-programmed time intervals
- # Facilitates Real Time Location

Semi-Passive Time-Temperature Tags

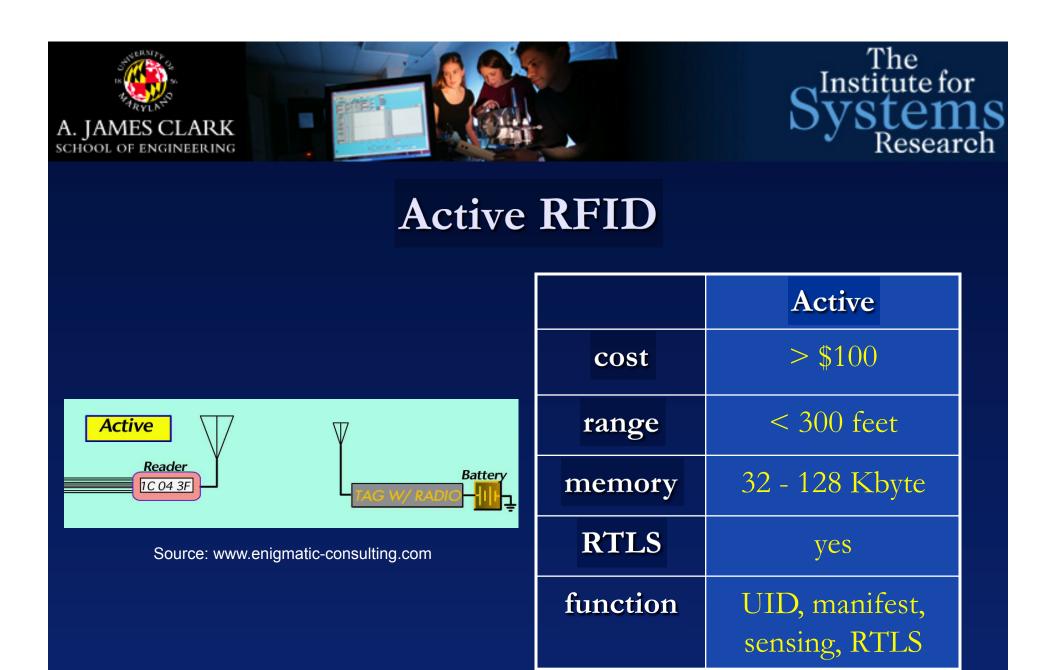
source: www.infratab.com

Specifications

Operating range: -25°C TO +70°C Sensor accuracy: ± 0.5°C: -20°C to +50°C Sensor resolution: 0.1° Shelf life calculation: linear, exponential, other Tag life: 1 day to 3+ years Alerts: shelf life, thresholds, elapsed time History: start to either tag-stop or to "0" shelf life

Agri-food Lifecycle Monitoring

→ active RFID



5/14/2009

Marc Cohen

Active **RFID**

Uses an on-board battery to autonomously:
Transmit ID and data to reader
Collect and store data from sensors
Report & store real-time location data
Boost read distance
Improve readability under difficult conditions
Alert under user-defined conditions

Agri-food Lifecycle Monitoring

Real-Time Location

5/14/2009

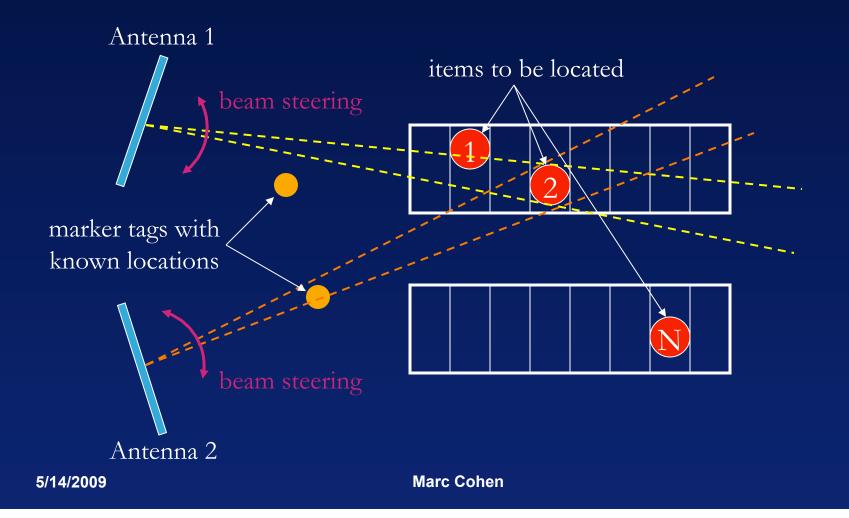
Marc Cohen

Real-Time Location Systems

Wireless Mesh Networks (WiFi, Bluetooth, Zigbee)

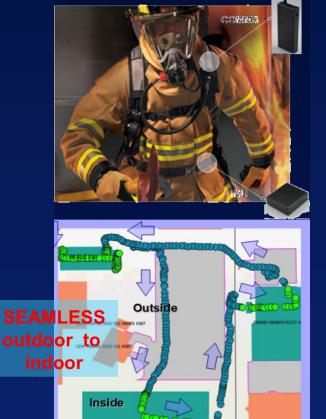
- Inertial, (Gyros, Accelerometers), Pressure, Signal Strength, Maps
- Active RFID
- # Indoor outdoor local
- Global System for Mobile Comm. (GSM), General Packet Radio Service (GPRS)
 - Cell Phone networks
 - # Outdoor indoor long range
- + GPS, Satcomm, Inmarsat, ...
 - # Outdoor global range

global



RTLS: Common Methods

- Angle of Arrival (AoA)
- Line-of sight (LoS)
- # Time of Arrival (TOA)
- # Time Difference of Arrival (TDoA)
- # Received Channel Power Indicator (RCPI)
- Received Signal Strength Indication (RSSI)
 Time of Flight (ToF)



RFID Real-Time Location

TRX: Sentinel Tracking System

- Small sensor and data radio worn by each firefighter
- Monitors status, movement, location, and communicates in real time
- Tracks indoors and outdoors with display on a (networked) laptop
- Requires no pre-installed infrastructure
- Data replay for training purposes
 - Mesh network formed by data radios

Software practical and easy to use Designed with firefighters

Farm to Fork: What can technology do?

In-field diagnostics

- Multiplexed Assay Array
 Imbedded Barcodes
- IT infrastructure

Autonomous monitoring

- Environment/Climate
- Feed/Chemicals
- #Livestock

Tracking and Tracing
Passive, BAP & Active RFID
RTLS inside and outside
Secure Web Portals
Databases

Prognostics