Computer-based Tracking Protocols: Improving Communication between Databases

Amol Deshpande Database Group Department of Computer Science University of Maryland

Overview

- Food tracking and traceability crucial in today's world
 - Public health
 - Responding to outbreaks
 - Accountability
 - Operational efficiency
- Tremendous amounts of useful information out there and growing daily
 - A small fraction in use today
 - Typically ad hoc, labor-intensive to use it
- How do we exploit this information ?
- What are the challenges that we will face ?
 - Many form active research areas in databases today

Data Overload Processing, **Distribution Network Food Production** Packaging Hospitals Retailers

Consumers

Laboratories

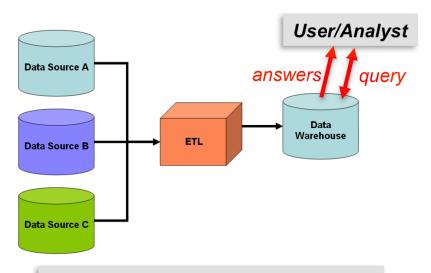
Data Overload

- Unprecedented and rapidly increasing instrumentation of our every-day world
 - Data from suppliers, warehouses, supermarkets
 - Patient monitoring data (EHR)
 - Sensor networks that monitor: container temperatures during transit, patients' vitals signs, water/air contaminants
 - RFID devices that can track at the pallet level
 - More efficient and faster genome sequencers
 - Social networks
- Potentially very useful data
 - Proactive alert and anomaly monitoring
 - More informed decision-making; better response to outbreaks
 - Faster information dissemination to interested parties

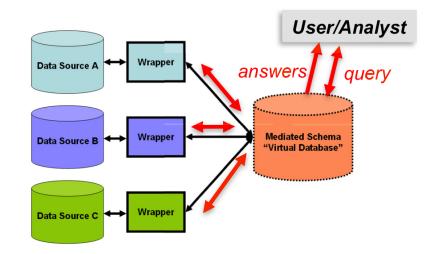
Wireless sensor networks

Distributed measurement networks (e.g. GPS)

RFID


Challenges

- Highly distributed data sources
 - Continuously generating data at high volumes
- Entities that don't talk to each other
 - For legal or technical reasons
- Privacy
- Noisy, erroneous, often incomplete data
- Data provenance ("tracking")
- Often don't know what to do with the data
 - Need to support data analytics, data mining


Data Integration

- Combining information from distributed, heterogeneous data sources
 - Different administrative domains
 - Typically different "schemas"

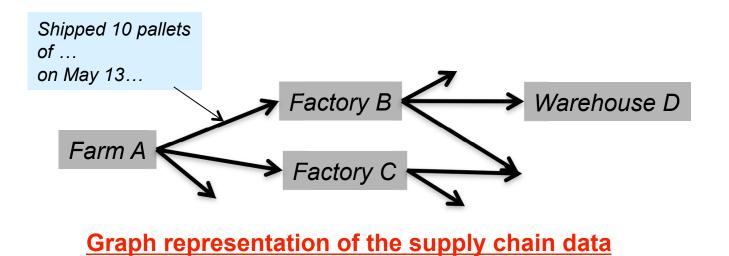
Using a Data Warehouse

- + Efficient
- + Low-latency query processing
- + Very well-developed technology
- Stale data
- Expensive; not always feasible

Using a Mediated Schema

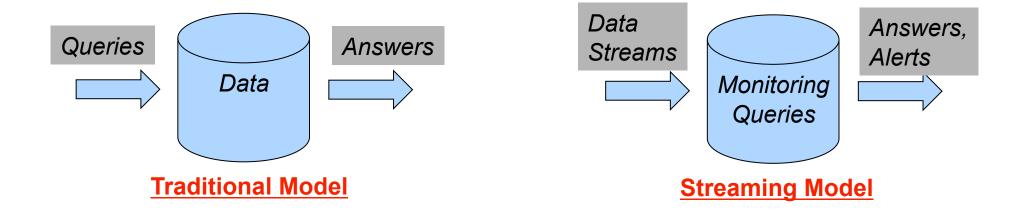
- + "Real-time" data
- + Cheaper hardware costs
- Conceptually harder to set up
- High latencies

Data Integration: Challenges

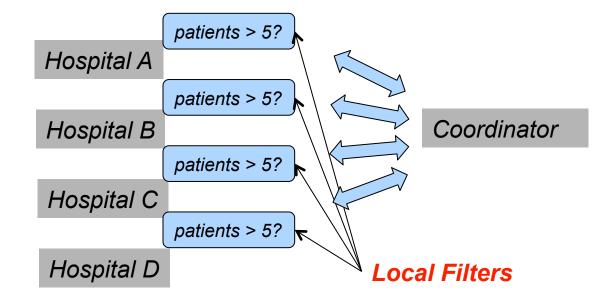

Semantic heterogeneity

- How to design translation routines or wrappers ?
- Must figure out the correspondences between different data sources
 - Commonly called "schema mapping" or "schema matching"
- Standardization (e.g. using XML) ideal, but often not feasible
- Setting up the data integration
 - E.g. constructing the queries to convert data back and forth
- Typically semi-automatic process
 - Find possible correspondences and mappings
 - Refine using user feedback
- Active research area in the database community

Semantic Integration Research in the Database Community: A Brief Survey; A. Doan and A. Halevy; Al Magazine, Special Issue on Semantic Integration, Spring 2005.

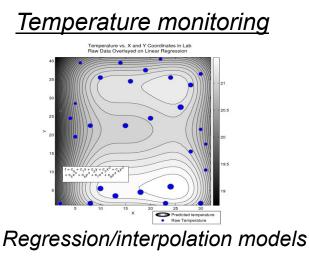

Data Analysis and Processing

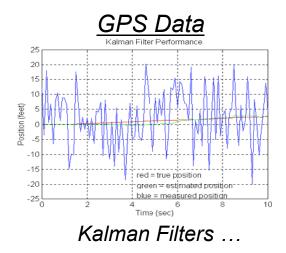
- What data model and query language ?
 - Relational databases ?
 - Tabular representation may not naturally capture the environment
 - Is SQL the right query language ?
 - SQL doesn't handle temporal data very well
 - No real alternative for large datasets
 - Recent development of "cloud computing" may be a solution enables renting compute cycles as needed


Data Analysis and Processing

- Must be able to do real-time monitoring over the data
 - By using "continuous queries" over "data streams"
 - Over both relational data and XML data
 - Need to be able to specify: "only consider data generated in last day"
 - Complex event processing
 - Tell me if "A happens followed by B within 1 hour"
 - Anomaly detection
- Active research area in recent years
 - Several commercial systems (Streambase, Truviso, IBM System S...)

Data Analysis and Processing


- Data is naturally distributed
 - Bringing it together at one location not feasible
 - Data must be processed where it is
- Need distributed aggregation and threshold monitoring
 - Alert if "number of patients with flue is more than 100 in the entire state"



M. Franklin et al.; Design Considerations for High Fan-in Systems: The HiFi Approach; CIDR 2005 M. Garofalakis; <u>http://www.softnet.tuc.gr/~minos/Papers/eds09dstreams.pdf;</u> 2009

Statistical Modeling

- Need for real-time *statistical modeling* of data
 - Regression, interpolation, classification, anomaly detection, forecasting and prediction models often used
 - Recently Bayesian approaches have become popular
- Very little work on integrating these within a data management framework
 - MATLAB not sufficiently easy to use or scalable in a distributed setting

A. Deshpande, S. Madden; MauveDB: Supporting Model-based User Views in Database Systems; SIGMOD 2006 B. Kanagal, A. Deshpande; Online Filtering, Smoothing and Probabilistic Modeling of Streaming data; ICDE 2008

Data Uncertainty

- Real-world data exhibits many uncertainties
 - Measurement noise, errors (sensor, RFID data)
 - Trust, reputation or quality issues (data integration)
 - Probabilities (classification, inference)
 - Imprecise queries (not sure what we are looking for)
 - Erroneous, but faster, detection devices
- Current database systems typically ignore them
 - Can lead to inaccuracies
 - May prevent early detection because of low confidences
 - If many analysts individually suspect an outbreak with low confidence, the overall likelihood should be high

Data Uncertainty

- Instead, represent the uncertainty explicitly in the data and reason about it during processing
 - Each event associated with a "probability of being true"
 - An attribute associated with a set of values with a probability distribution, instead of just one value
- Use probability theory principles to operate upon them
 - May choose to use something different (e.g. for reputation)
- Active research area in databases
 - With several projects here at UMD

Amol Deshpande et al.; Graphical Models for Uncertain Data; 2009. Nilesh N. Dalvi, Dan Suciu: Management of probabilistic data: foundations and challenges; PODS 2007.

Other Challenges

Privacy

- Many entities don't want to share data
 - For good reasons
- In many cases, we only need aggregated data
 - Hide the sensitive information somehow
- Many mechanisms developed in recent years
 - *k-diversity, I-anonymity;* Data perturbations
- But still hard to guarantee data privacy
- Data provenance
 - Similar notion to "traceability"
 - How to do this over distributed data streams, complex aggregation and fusion...

Other Challenges

Data acquisition

- Can we automate the data acquisition process ?
 - Which food to test, and what tests ?
 - Who to interview ?
- The cost of acquisition is high
- Can use statistical prediction models to decide the most important information to acquire

• Questions ?