

© 2009 Geocentre Consulting © 2009 Tele Atlas © 2009 Europa Technologies

Food fraud

Telegraph.co.uk

Bleinhem Palace mineral water bottles 'filled with tap water'

Exclusive bottles of luxury "mineral water" from Blenheim Palace were filled with ordinary tap water by a businessman, a court heard.

Last Updated: 1:06AM GMT 27 Jan 2009

Landowner Ralph Searle, 58, put the mains tap water in the Blenheim bottles in a scene reminiscent of Del Boy Trotter's activities in television's Only Fools and Horses.

A court heard Searle had won a contract to bottle and sell water for office coolers from the Duke of Marlborough's Blenheim Palace estate in Oxfordshire.

Landowner Ralph Searle, 58, put the mains tap water in the Blenheim bottles - in a crime similar to a con by Del Boy Trotter from TV's Only Fools and Horses Photo: WALES NEWS SERVICE

But he was caught filling the bottles with tap water and other water from a spring at his farm 150 miles away in Wales.

More than 50 of his customers complained that the water in bottles at their offices had a "funny taste" compared to their usual Blenheim Mineral Spring Water.

Trading standards investigators raided Searle's plant to find "Blenheim" bottles filled with both tap water and water from his farm in the Black Mountains near Carmarthen, South Wales. The court heard the sodium and sulphate content in the water did not match the "high standards" of the Duke of Marlborough's top of the range mineral water.

Food fraud

HOW THE PUBLIC CAN BE DECEIVED

MEAT Selling nonorganic meat as

organic. Adding excessive water to meat without declaring it. Selling meat unfit for human consumption. Adding beef and other meat to

100% pork sausages. Selling 'lean' meat that contains as much fat as standard. Substituting Parma ham with a cheaper product.

FISH Selling farmed fish as wild. Mislabelling the

geographic origin.

FRUIT AND VEGETABLES Selling

conventional produce as organic.

Giving the wrong geographical origin.

Selling cheaper varieties of potato as an expensive variety such as King Edwards. Adding GM soya beans to conventional beans, without declaring them.

www.thisismonev.co.uk

buffalo milk to make mozzarella.

Diluting olive oil with cheaper hazelnut oil.

ORANGE JUICE Diluting it with inferior quality juice. Adding beet sugar to sweeten 'natural' orange juice.

Dyeing it dark green with chlorophyll to make it look

OLIVE OIL

like extra virgin.

Adulterating highly sought-after arabica beans with cheaper varieties.

ALCOHOL

Selling counterfeit versions of big brands, which can include dangerously high levels of methanol.

Watering down spirits.

Substituting cheap varieties for

expensive premium brands in bars. Adding extra sugar during wine making to increase alcohol content

RICE Using cheap varieties to bulk up expensive basmati rice.

COFFEE

Food fraud

Costs of food fraud:

- Global food fraud is estimated to be worth 50 b\$ on an annual basis
- \Box U.K. food fraud is estimated to be worth 70 m£ to 7 b£ annualy
- □ Fraud figures are expected to rise as a result of economic turn-down

True figures are difficult to assess

- Product verification is cost and time intensive
- Verification methods are still under development
- □ Swindlers are getting more and more inventive

Food fraud

Costs of food fraud

- Global food fraud is estimated to be worth 50 b\$ on an annual basis
- □ U.K. food fraud is estimated to be worth 70 m£ to 7 b£ annualy
- □ Fraud figures are expected to rise as a result of economic turn-down

True figures are difficult to assess

- Product verification is cost and time intensive
- Verification methods are still under development
- □ Swindlers are getting more and more inventive

TRACE project (2005 - 2010)

Main goals:

- □ Providing cheap tools for the verification of food origin and authenticity
- Develop a food trace tracebility standard (TraceCore XML)
- □ Dissemination of result to a broader audience; public awareness and perception

TRACE project WP1/15/16

WP1/WP15 (Food Origin Mapping)

Sampling campaign in Europe (500 - 2100 samples per commodity) Soil & surface water, Mineral water, Cereals, Olive oil, Honey, Chicken, Lamb & Beef

Analysis (bulk, extractions, defatted material) Trace elements, stable isotopes (δ^2 H, δ^{18} O, δ^{13} C, δ^{15} N, δ^{34} S) and 87 Sr/ 86 Sr

WP16 (Food Specification Modeling)

Database with sampling information and analytical results

Digital information about climate and geology (GIS maps)

Food specification maps

Food specification maps

Two approaches for the verification of food origin:

1. Database approach

H 14 (H)	1 7 X 3	13191812	計りる	2185 H KI	04-10						
					1111111111						
				et) 💶 🗖 🗶							
mineral wate	r : Table										
Collector	State	Faod product	Bottle	Trace-Code	LabNo Hydroiso		Region	Locality	Longitude	Latitude	MHD
IFR .	UK			1W		Ashbourna					
Hydraisotaa	1	mineral water	PE bottle	1W/RTw0512004	166377	Eemina	Itakan Ales	Piure (Sondrie)			10/20/06
IFR	UK	apring water		1WUKWa05100			Wales	Brecon Beacon			10/20/06
IFR	UK	spring water		1WUH246d05100		Brooks Spring V					12/01/06
IFR	UK	mineral water		1WUK		Weir House Nat		Weir House Sal			
EFS	Fr	mineral water	Glas bottle	1WFrMaq05090				Fat-de-France i			10/12/06
Hydroisotop	De	mineral water	Glas bottle	1WDeStu05120	168251		Schichtstufenla				11/29/07
IASMA	1	mineral water	PE bottle	19/RTw0510005	168245			(Umbria)			0301/07
Hydroisotop	De	mineral water		1WDeKed05100	166730		Nantiches Flac				09/09/07
IFR	UK	mineral water		1WUk2Md05100		Hadrian		Village Cross, N			10/01/06
IFR	Se	mineral water	Glas bottle	19/SpTen05100		Fortoide	Teretfo	La Orotova (Sar	-16.6	28.3	
NURD	le .	mineral water	PE bettle	1WieEv0509000		Kerry Spring	Ireland	Ballyfernter, Col	-10.4		5 06/08/06
Hydraisotaa	Pa	mineral water	PE bittle	1WPsPer05110	167594	Monchique	Agave	Caldas de Morel	-8.55	37.3	2 08/01/07
Hydroisotop	Pa	opring water	PE bottle	1WPaPa(05110		Agua de Nascel		Outeirinho (Sao	-0.55		5 09/17/07
Hydraisotop	Pa	mineral water		1WPsPer06110	167593	Luto		Luno-Mesheda	-8.37	40.3	8 02/01/07
FR	UK	mineral water	PE bottle	1WUk2Ne060700	163635	Glaspatrick	baland	County Topparar	-8.15	52.4	7 07/20/06
NURD CRUIN	lo lo	mineral water	PE bottle	1W/wE #050R00E			baland	Pallas Street, El	-7.96		5 07/01/07
NU8D	le .	mineral water	PE bettle	1W/wEir0508000	165773	Ballygowan	baland	Ballogswan, Net	-7.7	62.3	6 07/12/07
FR	UK	opring water	PE battle	1WURCe/05110	160137	Comish spring v			-4.76	50.9	5 10/03/06
IFR	UK	mineral water	PE bottle	1WURCe/05070		Comish		Cottage Down, 1	-4.52		3 12/16/06
IFR	UK	mineral water		1WUESco05100	166905	Fionnar	Scetland	Achmony Farm	-4.47	57.3	2 07/10/07
IFR	UK	spring water	PE battle	1WUKCe/0511C				Kelly, Liften, De	-4.27		6.05/01/06
IFR	UK	spring water	PE bittle	1WUKWa85570		Faitbourne Sprie		Charkstoke Mor	-4.22		1040106
FR	UK	mineral water	PE bottle	1WUKSco05070	163650	Caledonian Spri	Scetland	Lennoxtown Gla	-4.2	54.1	8 02/01/07
FR	UK	mineral water	PE bittle	1WUKSco05110		Scottish Minera		Lennoxtown Gia	-4.2		7.05/01/07
IFR	UK	spring water	PE bottle	194UkCek05110	168140	Taka	ConwallGevon	Lanstree, Devor	-4.2	50.9	2 09/29/08
FR	UK	spring water	Glas bottle	1WUKWa85110	168135	Uanily: Source	Wales	Lianityr	-4.12		8 09/01/06
IFR	UK	mineral water	Glas bottle	1WUKWa05070			Wales	Bethania Uanor	-4.08		2 08/19/07
FR	UK	mineral water	PEbittie	1WUKWa05070	163624	Brecon Carried	Wales	Liwyndawi Isaf 1	-3.97	51.8	8 06/01/07
FR	LIC	mineral water	PE bottle	1WUKSco0503		Highland Spring		Hohiand Spring	-3.77		5 09/01/0E

2. Food specification appraoch

Specifications from a dedicated database

- * Requires data/specs from all producers
- * Not very cost effective
- * Not necessary the result of local factors; needs regular update

Works best for limited number of well defined producers

Specifications based on relation between geo-climatic factors and food composition

- * Predicts specs for unsampled areas
- * Cost effective
- * Based on "static" local factors

Works also for many LOCAL producers

Food specification maps

WP16 progress towards food specification maps:

Parameter	Mineral water	Wheat	Chicken
δ²Η / δ ¹⁸ Ο	Annual min. temperature	Relation with climate not yet understood	Relation with climate not yet understood
⁸⁷ Sr/ ⁸⁶ Sr	Regional / local geology	Local geology	Geology + feed
δ ¹³ C	(disturbed by industrial CO2?)	Moisture conditions and drought stress	Feed composition (C3/ C4 plants)
Trace elements	Relation with geology not well understood	Na-concentrations might reflect sea- spray	not yet understood
δ^{15} N / δ^{34} S	not yet understood	not yet understood	not yet understood

Outstanding data analysis & modeling: Olive oil, lamb and beef, and further evaluation of honey data

Food specification maps

Food specification maps: Maps that predict the isotopic and/or trace element specifications of food commodities for any required production location

Specifications are based on the 95% confidence limits of the predicted value for some parameter at some location x,y

Combination of specifications for different parameters (par) for each x,y:

 $S_{A}(x, y) = cl_{par1}^{-} < par1(x, y) < cl_{par1}^{+} \& cl_{par2}^{-} < par2(x, y) < cl_{par2}^{+} \& \dots cl_{parN}^{-} < parN(x, y) < cl_{parN}^{+} < parN(x,$

Where cl+ and cl- are the individual 95% confidence limits.

Because specifications are defined as an interval (cl- to cl+), which overlap with other specifications, a certain measured isotope value in some food commodity will allways comply to a number of x,y locations, or area, on the map \rightarrow this area is called "specification area"

Food specification maps

Combined specification areas for δ^2 H, δ^{18} O and 87 Sr/ 86 Sr

The combined specification area (in green) applies to a cross-section which is smaller than the individual specification areas

Food specification maps

Does the sample comply to the specifications with 95% confidence?

Sample:	Specifications (x,y):	Complies?
δ^{2} H = -110 ‰	-105 ‰< δ²H < -125 ‰	TRUE
$\delta^{18}O$ = -12 ‰	-11 ‰ < δ ¹⁸ O < -13 ‰	TRUE
⁸⁷ Sr/ ⁸⁶ Sr = 0.716	0.707 < ⁸⁷ Sr/ ⁸⁶ Sr <0.714	FALSE

Multiple comparisons for independent hypothesis testing:

 $\alpha_{\text{overall}} = 1 - (1 - \alpha_{\text{single comparison}})^{\text{Ncomparisons}}$

Specifications have and individual α -error of 5% and 3 comparisons:

 $\alpha_{overall} = 14.3\%$

- → Testing multiple hypothesis increases the chance of false positives → correction needed
- → Situation gets worse for correlated variables (e.g. δ^2 H and δ^{18} O)

Food specification maps – mineral water

TRACE mineral water sampling in Europe:

- □ ~650 samples
- Different geology
- Different climate zones

Analysis:

- $\Box \quad \delta^2 H / \delta^{18} O$
- □ ⁸⁷Sr/⁸⁶Sr
- \Box $\delta^{34}S$
- □ Trace elements
- Major composition
- Tritium

Food specification maps – mineral water

Predition model Sr-isotopes in mineral water

Geological map Europe

Reclassification

87Sr/86Sr in mineral water

New classes	2.5perc	97.5perc
Cenozoic	0.708	0.715
Mesozoic	0.708	0.722
Palezoic	0.708	0.723
Paleozoic-Precambrian	0.708	0.739
Intrusives	0.708	0.728
Volcanics	0.704	0.714

Specification map for Sr-isotopes in mineral water

Food specification maps – mineral water

Prediction model Sr-isotopes in mineral water (upper and lower range)

Food specification maps - mineral water

Prediction model $\delta^2 H$ and $\delta^{18} O$ in mineral water

Currently: Prediction model European mineral water = isotope model global precipitation (Van der Veer et al., 2008)

Food specification maps - mineral water

δ^{2} H and δ^{18} O in mineral water

Currently: prediction model European mineral water = isotope model global precipitation (Van der Veer et al., 2008)

Food specification maps - mineral water

$\delta^2 H$ and $\delta^{18} O$ in mineral water

In pink the area where values range between -6.5 +/- 0.8 ‰ = specification area

arch

<u>TraceTool</u>

The TraceTool is a webapplication that was developed to facilitate working with a combination of food specification maps, and to disseminate the food specification approach to a broader audience

What can you do (mineral water):

* Retrieve predicted values for a certain production area
 → Compare with measured values to verify acclaimed production area

* See how specific a combination of specifications is
→ Where do similar values occur? What is the extent of specification area?

* Uncertainty of the map values

Future work:

- * Improve existing mineral water models
- * If possible, add models for mineral water
- * Extend with models for other food commodities

<u>At last</u>

This talk would not have been possible without the huge effort of many researchers in WP1, WP15 and WP16.

JIFSAN is thanked for the invitation and organization.

Interactive demonstration TraceTool

