

Facilitating Needed Drug Approval for Aquaculture: In Vitro Metabolic Profiles to Characterize and Predict Drug Residues in Cultured Finfish

Andrew Kane, Jaime Gonzalez, Renate Reimschuessel, Badar Shaikh

JIFSAN

CVM Mission

Facilitate drug approvals for minor species

while

protecting the food supply from harmful residues

Disease Impact

- Infectious and parasitic diseases losses in millions of dollars: major obstacles for aquaculture growth (Georgiadis et al., 2001).
- Salmon industry in New Brunswick: \$20 million/year in losses due to sea lice

(Davies and Rodger, 2000).

• Japan estimates \$125 million annual losses due to diseases of aquacultured species (Schnick et al., 1999). (40 drugs APPROVED in Japan)

Drugs approved for aquaculture

Drug	Species	Indication
Formalin	Finfish, finfish eggs, shrimp	Ectoparasites
Sulfamerazine	Trouts	Furunculosis
Oxytetracycline	Salmonids, catfish, lobsters	Bacterial septicemia
Chorionic gonadotropin	Broodfish	Improvement of spawning
Sulfa-ormetroprim	Salmonids, catfish	Furunculosis
MS-222	Fish, other aquatic poikiloterms	Sedation/ anesthesia

General Objectives

Develop species groupings

- Metabolic profiles
- Residue profiles
- In vivo in vitro correlations

Specific Objectives

- To contrast phase I (ECOD, EROD, PROD, BROD) and phase II (GST, GT, SULF) biotransformation kinetics in relevant aquacultured species.
- Baseline kinetics of farm-raised vs. labacclimated specimens of 3 species (rainbow trout, catfish, tilapia).
- In vitro metabolism of albendazole as a model drug in representative fish species.

Channel catfish Ictalurus punctatus

Channel catfish

Rainbow trout

Tilapia

Atlantic salmon

Species

Hybrid striped bass

Striped bass

Largemouth bass

Use model substrates for comparative studies:

- ECOD Ethoxycoumarin: phase I
- EROD Ethoxyresorufin: phase I (1AI)
- PROD Pentoxyresorufin: phase I
- BROD Benzyloxyresorufin: phase I
- Resorufin: phase II GT & ST
- CDNB Chlorodinitrobenzene: phase II GST

- Market size fish
- Harvest livers
- Homogenization & centrifugation
- Microsomes and cytosol
- Optimization assays

Enzyme source for in vitro analyses

Enzyme activities at different substrate concentrations discerned using an absorbance-fluorescence microplate reader.

Storage Data Enzyme (GST) activity in rainbow trout Effects of -80°C storage time (means ± S.E., n=6)

Sample kinetic data for three species of fish

EROD

Species (sample size)	V _{max} (pmols resorufin/min/mg prot)	κ _m (μΜ)	V _{max} / K _m
Rainbow trout (aquacultured) (n = 3)	28 ± 8	0.6 ± 0.07	49 ± 14
Rainbow trout (acclimated) (n = 7)	30 ± 5	0.1 ± 0.01	323 ± 43
Catfish (aquacultured) (n = 4)	39 ± 7	1.8 ± 0.5	24 ± 4
Tilapia (aquacultured) (n = 7)	74 ± 15	2.1 ± 0.3	33 ± 4
Tilapia (acclimated) (n = 8)	32 ± 2	0.2 ± 0.04	226 ± 36
Atlantic salmon (n = 5)	66 ± 7	0.2 ± 0.02	300 ± 28
Largemouth bass (n = 5)	27 ± 8	$0.9\pm\ 0.1$	30 ± 5

Sulfotransferase

Species (sample size)	V _{max} (pmols resorufin /min/mg prot)	κ _m (μΜ)	V _{max} / K _m
Rainbow trout (aquacultured) (n = 8)	190 ± 20	0.7 ± 0.1	287 ± 18
Rainbow trout (acclimated) (n = 8)	239 ± 19	0.9 ± 0.1	298 ± 45
Catfish (aquacultured) (n = 5)	265 ± 27	0.8 ± 0.1	388 ± 63
Catfish (acclimated) (n = 3)	49 ± 10	0.1 ± 0.0	487 ± 97
Tilapia (aquacultured) (n = 5)	328 ± 17	1.0 ± 0.2	354 ± 64
Tilapia (acclimated) (n = 5)	86 ± 9	0.6 ± 0.1	164 ± 39
Atlantic salmon (n = 5)	215 ± 14	0.5 ± 0.1	436 ± 63
Largemouth bass (n = 4)	147 ± 10	0.6 ± 0.1	300 ± 83
Striped bass (n = 4)	45 ± 5	0.1 ± 0.03	394 ± 77
Hybrid striped bass (n = 3)	46 ± 4	0.3 ± 0.1	309 ± 89
Bluegill (n = 4)	107 ± 23	0.7 ± 0.1	167 ± 35

Glutathione-s-transferase

Species (sample size)	V max (nmols CDNB/min/mg prot)	K _m (mM)	V _{max} / K _m
Rainbow trout (aquacultured) (n = 8)	929 ± 65	0.4 ± 0.05	2260 ± 200
Rainbow trout (acclimated) (n = 7)	419 ± 32	0.1 ± 0.01	4690 ± 254
Catfish (aquacultured) (n = 8)	657 ± 39	0.1 ± 0.02	5568 ± 413
Catfish (acclimated) (n = 6)	1972 ± 125	1.1 ± 0.1	1891 ± 74
Tilapia (aquacultured) (n = 8)	1508 ± 70	0.3 ± 0.01	5005 ± 23
Tilapia (acclimated) (n = 7)	1474 ± 109	0.6 ± 0.05	2434 ± 70
Atlantic salmon (n = 5)	1349 ± 107	0.5 ± 0.1	2816 ± 329
Largemouth bass (n = 8)	589 ± 52	0.4 ± 0.06	1491 ± 117
Striped bass (n = 7)	334 ± 30	0.2 ± 0.02	1525 ± 99
Hybrid striped bass (n = 7)	471 ± 39	0.4 ± 0.04	1395 ± 105
Yellow perch (n = 5)	490 ± 91	0.6 ± 0.1	859 ± 75
Bluegill (n = 8)	354 ± 26	0.3 ± 0.04	1394 ± 145

UDP-glucuronosyltransferase

Species	V _{max}	K _m	V_{max} / K_m
(sample size)	(pmols resorufin/min/mg prot)	(µM)	
Rainbow trout (aquacultured) $(n = 4)$	930 ± 258	32.3 ± 8.7	30.4 ± 4.4
Rainbow trout (acclimated) $(n = 8)$	834 ± 208	25.0 ± 6.0	34.0 ± 3.0
Tilapia (aquacultured) (n = 6)	368 ± 89	29.0 ± 9.0	15.4 ± 2.7
Tilapia (acclimated) (n = 6)	400 ± 88	29.0 ± 9.0	16.0 ± 3.0
Atlantic salmon $(n = 5)$	410 ± 86	24.0 ± 6.0	19.0 ± 3.0
Largemouth bass (n = 7)	273 ± 16	27.0 ± 3.0	11.0 ± 1.0
Striped bass (n = 5)	231 ± 29	29.0 ± 5.0	8.4 ± 1.0
Hybrid striped bass (n = 6)	271 ± 37	36.0 ± 7.0	8.2 ± 0.9
Bluegill (n = 6)	263 ± 31	17.5 ± 2.3	16.3 ± 3.1

V_{max} / K_m ratios for UDPGT

Move from baseline data to working with

Microsomes from albendazole exposed fish or Microsomes exposed to albendazole *in vitro*

in vitro Albendazole metabolism in 3 species

Species	V max (pmols ABZ-SO/min/mg protein)	K _m	V _{max} / K _m
Channel catfish	264.0 ± 58.6	22.0 ± 3.2	12.3 ± 1.9
Tilapia	112.3 ± 8.2	9.2 ± 1.7	13.6 ± 1.7
Rainbow trout	73.3 ± 10.3	3.9 ± 0.5	19.2 ± 2.6

 V_{max} , K_m and V_{max}/K_m values for *in vitro* Albendazole sulfoxidation in channel catfish, tilapia and rainbow trout microsomes, determined from the regression equations in Figure 1, above. V_{max} and K_m values differ notably between species, however the ratio of these values suggest similar *in vitro* metabolic efficiencies.

Does Albendazole induce EROD, PROD, BROD or GST after in vivo dosing?

- Significant induction of EROD activity was seen in all ABZ-treated fish as compared to control fish. Induction was highest in 24h and 72h post-dosage treatment groups.
- In general, CYP1A gene expression at the translational level is low in fish that have not been exposed to chemical inducers. CYP1A has been mainly studied as a subfamily that can be used as a biomarker for aquatic pollution due to its inducibility with numerous compounds that are present as water contaminants.

EROD	Control	24h	48h	72h	120h
7ER (1 uM)	8.5 ± 1.9	22.2 ± 2.5	19.1 ± 1.6	18.4 ± 3.1	19.6 ± 2.0
7ER (10 uM)	16.5 ± 3.9	48.5 ± 6.2	34.8 ± 3.4	48.9 ± 10.6	41.3 ± 7.9

EROD activity (pmols resorufin/min/mg protein) in ABZ-dosed channel catfish. Data are means +/- S.E.

PROD and BROD activity after in vivo albendazole exposure

No induction due to albendazole treatment in vivo.

Baseline activities have not been observed in any of the fish species tested in our previous experiments.

GST activity after *in vivo* albendazole exposure.

GST Activity:

GST activity was not induced in Albendazole-treated catfish livers. On the contrary, GST
was significantly reduced at 120h post-Albendazole treatment. This is in contrast to
what has been reported in mouse serum and muscle.

GST Activity	Control	24h	48h	72h	120h
CDNB (1mM)	512 ± 23	430 ± 32	456 ± 28	360 ± 46	354 ± 50

GST activity (nmols/min/mg protein) in ABZ-treated channel catfish. Data are means ± S.E.

No significant changes in ABZ-sulfox, suggests that CYP1A does not play a critical role in this reaction

In vivo efforts: Albendazole

(FDA-CVM metabolite/residue analyses)

Working

- Complete *in vitro* species comparisons
- Data analysis
- CVM *in vivo* albendazole exposures residue analysis – additional fish species – catfish, LMB
- Compare and contrast the *in vivo* and *in vitro* data to screen for correlations which could be used in a regulatory setting.

Anticipated benefits

- Accelerate the drug approval process for multiple fish species, based on modeling drug metabolic profiles and tissue residues.
- Reduce cost of approval process
- Effective disease control
- Improved production and profits
- Controlled drug use

Fin