Study of Nisin and Sublancin:

A Strategy for Protection of the United States Food Supply from Pathogenic Bacterial Spores Introduced through Bioterrorism

> JIFSAN Project November, 2004

J. Norman Hansen, Professor Department of Chemistry/Biochemistry University of Maryland, College Park

Laila H. Ali, Ph.D., Senior Research Scientist Officer Center for Food Safety and Applied Nutrition

washingtonpost.com U.S. Unprepared Despite Progress, Experts Say

By John Mintz and Joby Warrick Washin gton Post Staff Writers Monday, November 8, 2004; Page A01

The United States remains woefully unprepared to protect the public against terrorists wielding biological agents.

The consequences of a big biological strike could be epically catastrophic, and rapid advances in science are placing the creation of these weapons within the reach of even graduate students, they said.

Anthrax bacteria remain among the easiest microbes to manufacture and weaponize. Deepening alarm is the prospect of new genetically engineered pathogens that could be both more deadly and more difficult to detect and treat. A 2003 CIA study described the effects of these genetically altered strains as potentially "worse than any disease known to man."

To counteract the attack that officials are nearly certain will come one day, the nation needs long lists of new biowarfare antidotes.

Anthrax and Botulism

Air-borne
Water-borne
Pathogens
Food-borne

High fatality rates No cure once infection established

Life Cycle of Bacillus anthracis

Non-toxic Inhibitors of Spore Germination and Outgrowth

Nitrite

 Common chemical food additive that inhibits B. anthracis and C. botulinum spores

Nisin

- Sophisticated antimicrobial peptide that inhibits spores and kills vegetative cells
- World-wide use as a versatile food preservative
- Member of a family of antimicrobial peptides called "Lantibiotics"

The Lantibiotic Family of **Antimicrobial Peptides** Gene-encoded peptides Produced by Gram-positive bacteria Structures can be altered by genetic engineering Contain unusual amino acid residues Introduced by post-translational modification Non-standard amino acids possess unique chemical and biological properties

Many Lantibiotics are Known

Name of Lantibiotic	Mr	Producer Organism
Nisin	3353	Lactococcus lactis
Subtilin	3317	Bacillus subtilis
Epidermin	2164	Staphylococcus epidermidis
Pep5	3488	Staphylococcus epidermidis
Duramycin A	2012	Streptomyces cinnamoneus
Duramycin B		Streptomyces cinnamoneus
Duramycin C		Streptomyces cinnamoneus
Cinnamycin	2041	Streptomyces cinnamoneus
Ancovenin	1959	Streptomyces sp.
Mersacidin	1825	Bacillus subtilis
Actagardine	1890	Actinoplanes sp.
Lacticin 481	2901	Lactococcus lactis
Streptococcin AFF 22	2795	Streptococcus pyrogenes
Salivaricin A	2315	Streptococcus salilvarius
Lactocin S	3769	Lactobacillus sake
Carnocin IU 49	4635	Carnobacterium piscicola
Mutacin	3245	Streptococcus mutans
Cytolysin		Enterococcus faecalis

Nisin & Sublancin

1928, Rogers & Whittier

Mechanism of Antimicrobial Action

- Molecular target of Nisin/Sublancin action
- Mechanism of interaction of cellular target
 - Covalent attachment of nisin/sublancin to target?
 - Involvement of dehydro residues?

Covalent Attachment of Dehydro Residues

region of extended planarity

Cysteine Addition to Nisin

Labeled Probes

Bacillus cereus T Spore

Uninhibited Outgrowing Spore

Spore Coat

emerging cell

Nisin-Fluorescein Inhibited Spores

Nisin-Fluorescein Labeled Spore

Fluorescence Microscopy

Electron Microscopy

Immunogold Nisin-biotin Spore

Nisin-Biotin Labeled Spores

Immunogold Detection

SDS-PAGE of *B. cereus* Cells Labeled with Nisin-Biotin

Can Lantibiotics Respond to Mutagenized Pathogens?

New Pathogens introduced

- Genetically-engineered B. anthracis
- Molecular target modified
- Genetically Engineer the Lantibiotic
 - System for mutagenesis
 - System for selection of biologically-active mutants.

Lantibiotic Libraries

- *B. subtilis* 168 as expression host
- Express mutagenized Lantibiotic in a form that is displayed on the exterior of the producer cell
- Use cell-target ligands to identify biologically-useful Lantibiotic analogs
- Determine Lantibiotic structure by sequence analysis of mutant gene

Lantibiotic Library

Figure 8. Lantibody Display Peptide as expressed from 168. Consists of mature sublancin segment a 20-residue poly Gly sequence (38-57), and the subtilin leader segment (58-81).

Conclusions

- The Lantibiotic family of antimicrobial peptides are natural inhibitors of pathogenic bacterial spores
- Exploitation of their natural properties provide a short-term response to spore pathogens in the food supply.

The development of Lantibiotic libraries offers a means to adapt to new forms of bioterror agents, such as genetically-engineered anthrax and other weaponized pathogens.

Acknowledgments

- Srilatha Kuntumalla
- Monica Sharma
- Amer Villaruz
- Sahru Yuksel
- Gaobo Zhou
- Fian Balgley