Risk Ranking Framework The IFT-FDA Cooperative Initiative

Presentation at JFSAN Workshop: Tools for Prioritizing Food Safety Concerns

> By Nga Tran June 4, 2007

Topics

- Overview of IFT-FDA risk ranking prototype
 - Risk Criteria
 - Issues and considerations in ranking across microbes and chemical food risks

Overview: The Charge

- Develop a risk-ranking framework
- Facilitate the evaluation and ranking of microbiological agents, toxins, and chemicals

 Quantitatively or semi-quantitatively comparing and determining potential health threats

Evaluating interventions or control points ...
 to protect the food supply.

Overview: Participants

Frank F. Busta, PhD (U. Minnesota) Sherri Dennis, PhD (FDA) Joseph Hotchkiss, PhD (Cornell Univ.) Lee-Ann Jaykus, PhD (NC State) Jennifer McEntire, PhD (IFT) Marianne Miliotis, PhD (FDA) Rosie Newsome, PhD (IFT) Greg Paoli, MAS (Decisionanalysis) Barbara Petersen, PhD, MPH (Exponent) Donald Schaffner, PhD (Rutgers Univ.) Fred Shank, PhD (IFT) Bruce Tompkin, PhD (ConAgra) Nga Tran, DrPH, MPH (Exponent) Mary Wagner, PhD (E & J Gallo Winery)

Overview: The Process

- Two years (2003-2005)
- Reviewed literature and other developments
- Developed risk ranking criteria modules and integration algorithm
- Developed, deliberated, implemented and peer reviewed a web-based prototype

Risk Ranking Prototype Highlights

- Risk criteria
 - Exposure (prevalence and concentration, food intake)
 - Dose response
 - Risk characterization and public health impacts
- Module components
 - Expert insight, evidence databases
 - Hazard metrics/weights, decision logic, help files
- Module integration via algorithms and evidence hierarchy

Risk Criteria: Exposure

- A. Likelihood of hazard introduction?
- B. How Controllable is the hazard?
- C. Potential for abuse, mishandling

Prevalence, concentration at time of consumption

Food Intake

Prevalence and Levels

- Expert insights (microbe); Data/Evidence (chemical)
- Prevalence: yes/no (microbe); non-detects (chemical)
- Enumeration:
 - log units/g (microbes)
 - g/g scale (chemicals)

Food Intake

- US survey data (e.g. Continuing Survey of Food Intakes by Individuals (CSFII) 1996-98
- Exposed population and quantity of food consumed:
 - grams/eating occasion grams/day grams/kg body weight per day

Risk Criteria: Hazard Characterization or Dose Response

- Multiple Endpoints:
 - Chemical: cancer, non-cancer (acute and chronic)
 - Micro: infectious or toxigenic
- Multiple dose-response models
 - Toxigenic responses: exponential, step threshold, threshold linear, non-threshold linear and cancer
 - Infectious responses: Beta-Poisson, exponential, threshold linear, and non-threshold linear.

Criteria: Risk Characterization

- Monte Carlo simulation:
 - A range of doses combined with dose-response model(s)
 - Mean probability of illness
- Traditional chemical and micro approaches
 - Chemical: lifetime and annual risk, exposed population, annualized cases
 - Micro: risk per serving, annual contaminated servings, annualized cases

Risk Criteria: Public Health Impacts

- Risk estimates expressed as annual p-DALYs for both microbes and chemicals
 - Pseudo (p)-Disability Adjusted Life Years (DALY)
 - Alternatives to disease specific DALY
 DALY = disability adjusted life years = YLL + YLD
 YLL = years of life lost
 YLD = years lived with disability
- Mean to rank public health impacts across chemical and micro food risks

p-DALY

- Health impact is captured semi-quantitatively on 2 dimensions:
 - impact severity (mild, moderate, severe, and death) and
 - duration (short, medium, long)
 - 12 ways of describing a health impact.
- The p-DALY Template allows the impact of the hazard, whether cancer, infectious, or toxic, to be put on a relative scale.

Template Name: Escherichia coli 0157: H7

Health Impact	Duration (Years)	Severity	pDALY	Fraction of Cases	Adjusted pDALY
Moderate, Short- Term Impacts	0.0055	0.050000	0.000274	0.970400	0.0002659
Severe, Short-Term Impacts	20.000000	0.300000	6.000000	0.027900	0.1674000
Severe, Long-Term Impacts	20.000000	0.300000	6.000000	0.001000	0.0060000
Childhood Mortality	75.000000	1.000000	75.000000	0.000600	0.0450000
Elderly Mortality	10.000000	1.000000	10.000000	0.000600	0.0060000
Total:				1.000500	0.2246659

Risk Ranking Prototype Simplified Schematic

Remaining Issues

- The IFT-FDA prototype can rank across chemical cancer and microbe risks, but not for non-cancer risks (below or above threshold)
 - What to do with MOE, HI or HQ?
 - Additional considerations are needed to include chemical non-cancer risks.
- The p-DALY
 - Expert judgment
 - Further evaluation is warranted.

Considerations

- What is the strength of the judgment that the agent causes adverse effects when ingested?
 - How to adjust for unequal weight of evidence?
- What is the likelihood that the hazard is present and at what level in a particular food?
 - What information is available to determine exposure/dose? Data, expert judgment?
 - What metric and potential impact on estimates used for ranking
- What information is available for dose (exposure) response?
 - What metric and potential impact on estimates used for ranking

Considerations – Public Health Impact

Chemicals: multiple disease outcomes with different severity

• Microbes:

- Often focus one main disease outcome, but more serious disease manifestations associated with a proportion of cases
- Some instances, different syndromes by a single agent.
- Susceptible sub-population(s) (e.g. children, the elderly, and immunocompromised)

