Psychological Elements of How Individuals Receive Information – Can You Shift Their Thinking?

Bachir Kassas, PhD

Assistant Professor

Food and Resource Economics Department, University of Florida

October 29, 2024

Presented at: JIFSAN-CFS3 Advisory Council Annual Symposium

Research Introduction

Behavioral Economics

Combines elements from psychology and economics to understand personal and interpersonal factors influencing consumer decisions.

Neuro-Economics

Combines additional insights from neuroscience to delve into the neurobehavioral mechanisms responsible for individual decisions and reactions.

Examples of Previous Work

- 1. Fine-tuning willingness-to-pay estimates in second price auctions
- 2. Incorporating biometric data in models of consumer choice
- 3. Nudging higher responsiveness to prevention practices during COVID-19
- 4. Demand for healthy snacks in US varies by product, health benefit, and color
- 5. Consumer awareness of country-of-origin labeling
- 6. Influence of health and environmental information on consumer preferences for goat meat
- 7. The role of political framing in information provision to promote preferences for local foods
- 8. Beef: It's what's for dinner, with a bit of seaweed for sustainability

Background

Trend in Florida Citrus Production

Data from USDA

Background Cont.

the target DNA the target DNA GMOs CRSPR gene editing CAS9 Technique: a foreign gene is Technique: gene is cut and its protein inserted into the DNA strand. DNA is modified. guide **RNA** TTTTTTTT custom-designed Targeted DNA sequence Scientists can now edi the gene through DNA deletion, modification. or addition

• Gene-editing identified to have promising applications in providing solutions for major agricultural challenges

CRISPR/CAS9 cuts

CRISPR/CAS9 identifies

Background Cont.

Combating HLB with gene editing

Identification of HLB Susceptibility Genes in a Citrus Population Generated using Multiplexed CRISPR/Cas9 Gene Editing

Objectives

- 1. The influence of psychological/behavioral traits on consumer acceptance of gene editing in orange juice
- 2. The effects of information framing on consumer preferences for CRISPR
- 3. The effects of misinformation interventions on consumer acceptance of food biotechnology

Consumer Preferences for Gene editing: The Influence of Risk and Behavioral Traits

Motivation

• Thin GE literature so far show potential for higher acceptance than GMO

Distribution of individual WTP for breeding technologies Source: Muringai et al., (2019)

Motivation Cont.

- Focus has been on
 - Influence of information (Caputo et al., 2021)
 - Food safety perceptions (Uddin et al., 2021)
 - Aversion to novel technology (Ortega et al., 2022)
 - Beliefs (Caputo et al., 2021)
- This study focuses on
 - Investigating WTP for GE orange juice
 - Exploring the influence of risk preference/perception, time preference and ambiguity tolerance on WTP

Materials and Methods

- Data collection
 - Online survey of 1796 U.S orange juice consumers
 - Risk preference and perception
 - BSS Scale
 - Risk perception scale
 - Ambiguity tolerance
 - MSTAT-II scale
 - Time preference
 - CFC scale

Materials and Methods Cont.

Choice experiment parameters

Attributes	Number of levels	Levels
Price (\$/52-59oz pack)	4	\$3.00, \$3.75, \$4.50, \$5.25
Consistency	2	With pulp, Without pulp
Origin	2	Florida, Imported
Method	3	Conventional, GMO,
		CRISPR

Example choice set

	Option A	Option B	Option C	Option D
Consistency	With pulp	No pulp	No pulp	I will not
Origin	FL	FL	Imported	option
Method	CRISPR	Conventional	GMO	-
Price	\$3.75	\$3.00	\$4.50	

Results

Mixed Logit Model Results

	Coefficient	WTP
Means		
Price	-0.311***	
	(0.014)	
None	-1.639***	
	(0.066)	
No pulp	0.351***	\$1.13
	(0.026)	
Florida	0.752***	\$2.42
	(0.026)	
Genetic editing (CRISPR)	-0.525***	-\$1.69
	(0.028)	
Genetic modification	-0.923***	-\$2.97
	(0.037)	
Standard deviations		
No pulp	1.339***	
	(0.042)	
Florida	0.814***	
	(0.041)	
Genetic editing (CRISPR)	0.664***	
	(0.048)	
Genetic modification	1.014***	
	(0.054)	

Linear Regression Results

Dependent variable – Individual WTP estimates for	Coefficients
gene-editing	
Intercept	-0.505*
	(0.300)
Ambiguity tolerance	-0.084**
	(0.040)
Risk perception	-0.184***
	(0.036)
Risk preference (risk seeking)	0.036***
	(0.012)
GE familiarity	0.007
	(0.025)
Time preference (future-oriented)	-0.069*
	(0.041)
Objective knowledge	-0.080
	(0.075)
Opinion about biotechnology benefits	0.136**
	(0.060)
General trust	0.011
	(0.038)
Demographics	Yes

Latent Class Analysis

	Class 1 (Florida	Class 2 (No-	Class 3 (Price	Class 4
	OJ seekers)	pulp	insensitive	(Habitual OJ
		consumers)	shoppers)	purchasers)
Price	-0.455***	-1.072***	0.331***	-0.922***
	(0.052)	(0.066)	(0.024)	(0.040)
No product	1.110***	-2.697***	-0.845***	-5.456***
	(0.241)	(0.310)	(0.147)	(0.175)
No pulp	1.541***	3.885***	-0.047	-0.660***
	(0.116)	(0.230)	(0.038)	(0.056)
Florida	2.346***	0.089	0.359***	1.169***
	(0.110)	(0.125)	(0.039)	(0.067)
Genetic editing	-0.964***	-0.334***	-0.074*	-1.330***
(CRISPR)	(0.085)	(0.113)	(0.044)	(0.076)
Genetic	-2.002***	-0.665***	-0.240***	-1.154***
modification	(0.129)	(0.130)	(0.046)	(0.070)
Class share	0.216	0.168	0.323	0.294

Discussion/Conclusion

- Strong demand for FL orange juice encouraging for FL citrus industry
- CRISPR products have potential to perform better in the marketplace than GM products
- Various behavioral and demographic characteristics correlated with WTP
- Four distinct groups with significant differences in preferences
- Compared to Habitual OJ Purchasers (reference class);
- *Florida OJ seekers* older, female, more risk averse, higher tolerance for ambiguity

Discussion/Conclusion

- *No-Pulp Consumers* less familiar with GE, younger, female and less concerned about OJ health benefits
- *Price-Insensitive shoppers* higher household income, pay attention to OJ health benefits, risk-seeking, familiar with GE, younger
- Results useful for targeted educational campaigns

The Influence of Framing Effects on Consumer Preferences for Gene Editing

Motivation

Motivation Cont.

- Previous info treatments in CRISPR studies
 - Benefits, primary beneficiaries, description of methods, format of info, etc (Colson et al., 2011; Caputo et al., 2020; Gotz et al., 2022; Hu et al., 2022; Shew et al., 2018)
 - Results show improvement in attitudes, dependent on type of info
- Which message frames are most effective in boosting CRISPR acceptance?
- Previous positive/negative info studies in food biotechnology (Anand et al., 2007; Colson et al., 2011; Depositario et al., 2009; Weir et al., 2021).
 - Positive info = benefits, negative info = risks

Objectives

- This study frames CRISPR benefits positively or negatively without changing meaning
 - Message is identical in both frames
- This study focuses on
 - Investigating consumers' preference and willingness-to-pay (WTP) for CRISPR orange juice
 - Analyzing the impacts of information framing on WTP

Methodology

Data collection

- Online survey (n=1929)
- Survey content
 - Orange juice consumption
 - Information frames
 - Valuation of orange juice products
 - Behavioral questions
 - Demographics
- Treatments Control (no info), Positive frame, Negative frame

Methodology (Cont.)

• Positive frame

Please read through the following information carefully

CRISPR biotechnology - Food biotechnology is an umbrella term covering a variety of processes to develop new or improved food products. CRISPR is a food biotechnology method that acts like a scissors to cut and edit existing DNA within a plant.

Some of the benefits of this technology are:

- 1. CRISPR can increase food production, thereby reducing world hunger.
- 2. CRISPR can reduce the need for the application of pesticides and other agrochemicals.
- 3. CRISPR can significantly increase the quality and attractiveness of food products
- 4. CRISPR can provide a solution to incurable diseases, thereby reducing the financial burdens on farmers

Methodology (Cont.)

• Negative frame

Please read through the following information carefully

CRISPR biotechnology - Food biotechnology is an umbrella term covering a variety of processes to develop new or improved food products. CRISPR is a food biotechnology method that acts like a scissors to cut and edit existing DNA within a plant.

Some of the disadvantages of not using this technology are:

- 1. Not using CRISPR can result in continued shortage of food, especially for people that need it the most
- 2. Not using CRISPR can result in more application of pesticides and other agrochemicals, leading to further degradation of the environment
- 3. Not using CRISPR can lead to significant reductions in the quality of food products
- 4. Not using CRISPR can lead to worsening of plant diseases, thereby significantly increasing financial burdens on farmers

Methodology (Cont.)

Choice experiment parameters

Attributes	Number of levels	Levels
Price (\$/52-590z pack)	4	\$3.00, \$3.75, \$4.50, \$5.25
Consistency	2	With pulp, Without pulp
Origin	3	Florida, California,
		Imported
Method	2	Conventional, CRISPR

Example choice set

	Option A	Option B	Option C	Option D
Consistency	With pulp	No pulp	No pulp	I will not
Origin	FL	FL	Imported	option
Method	CRISPR	Conventional	GMO	-
Price	\$3.75	\$3.00	\$4.50	

Comparisons of WTP Between Treatments

	Control (n=654)	Positive group (n=620)	Negative group (n=655)	Positive vs Control ^ψ	Negative vs Control [¢]	Positive vs Negative ⁴
				p value	p value	p value
No pulp	\$1.15 [0.99, 1.30]	\$0.65 [0.51, 0.79]	\$1.10 [0.94, 1.28]	0.999	0.652	0.999
Florida	\$1.44 [1.27, 1.60]	\$1.17 [0.99, 1.33]	\$1.49 [1.29, 1.69]	0.988	0.328	0.993
California	\$1.06 [0.89, 1.20]	\$1.02 [0.86, 1.16]	\$1.17 [0.97, 1.34]	0.622	0.194	0.874
CRISPR	-\$0.65 [-0.78, -0.49]	-\$0.30 [-0.44, -0.16]	-\$0.50 [-0.66, -0.33]	0.000	0.095	0.034

Linear Regression Results

	Dependent variable = Willingness to
	pay for CRISPR attribute
Explanatory variables	Coefficients
Intercept	-0.958***
	(0.264)
Positive frame group	0.193**
	(0.088)
Negative frame group	0.134
	(0.089)
Perceived importance of	-0.296***
production method attribute to	(0.031)
choice	
Openness to Technology	0.343***
	(0.055)
Identification as Foodie	0.132***
	(0.049)
Subjective knowledge of CRISPR	0.131***
	(0.035)
Objective knowledge of CRISPR	0.142
Objective knowledge of CRISTR	(0.091)
	(0.091)
Opinion about CRISPR benefits	0.309***
	(0.079)
Demographics	Yes

Main take-aways

- Educational campaigns significantly influence WTP
- Positive framing is more effective than negative framing
 - Can be an effective nudge in food marketing
- Technology-friendly individuals and those that identify as 'foodies' are more likely to accept CRISPR
- Familiarity with CRISPR and its benefits should be increased
- Educational and marketing campaigns should especially target older females

How Effective are Debunking Strategies? A Study on Misinformation in Food Biotechnology

Motivation

Misinformation about vaccines spreads like a disease

Get your vaccination information from public health authorities!

Misinformation, Fake News, and Political Propaganda

Become your own "fact checker"

The New York Times

A Genocide Incited on Facebook, With Posts From Myanmar's Military

Motivation Cont.

The Very Real Danger of Genetically Modified Foods

ARI LEVAUX | JAN 9 2012, 7:57 AM ET

New research shows that when we eat we're consuming more than just vitamins and protein. Our bodies are absorbing information, or microRNA.

Motivation Cont.

- Corrective messages to combat misinformation
 - Effectiveness varies across context
- Information communication to fight GM safety misconceptions
 - Studies have focused mainly on info about benefits, potential risks (Colson & Huffman, 2011; Depositario et al., 2009; Rousu et al., 2002; Valente & Chaves, 2018; Weir et al., 2021)
- Incorporating misinformation interventions is important
- This study investigates
 - The impact of various debunking interventions on consumers' perception of GM safety
 - How these interventions affect consumers' WTP for non-GM label

Methodology

- Online survey of 1799 U.S orange juice consumers
- Respondents randomized into 1 of 5 treatment groups
 - Control (no information)
 - Facts
 - Myths vs Facts
 - Facts (longer)
 - Myths vs Facts (longer)

Methodology Cont.

Choice experiment parameters

Attributes	Number of levels	Levels
Price (\$/52-59oz	4	\$3.00, \$3.75, \$4.50,
pack)		\$5.25
Pulp	2	With pulp, Without pulp
Made in USA	2	Present, Absent
Non-GMO	2	Present, Absent

Results

Comparison of WTP Between Treatments

	Control	Facts Only	Myths vs	Facts only	Myths vs
	group	group	Facts	(longer	Facts
			group	version)	(longer
				group	version)
					group
Pulp	-\$1.17	-\$1.33	-\$1.54	-\$1.48	-\$1.49
	[-1.41, -0.97]	[-1.52, -1.13]	[-1.79, -1.28]	[-1.71, -1.23]	[-1.75, -1.26]
Made-in-	\$1.05	\$0.69	\$1.20	\$1.17	\$1.02
USA	[0.88, 1.23]	[0.51, 0.84]	[1.02, 1.39]	[0.99, 1.34]	[0.84, 1.21]
Non-GMO	\$0.60	\$0.25	\$0.39	\$0.33	\$0.35
	[0.43, 0.78]	[0.12, 0.40]	[0.20, 0.59]	[0.17, 0.51]	[0.18, 0.54]
		Comparison	with control ^{\$}		
		p-value	p-value	p-value	p-value
Pulp		0.83	0.98	0.97	0.97
Made-in-		0.99	0.15	0.20	0.60
USA					
Non-GMO		0.99	0.94	0.98	0.97

Myth Perception Sub-Group Analysis

	Group 1	Group 2 (Neutral to	Group 3 (Agree with			
	(Disagree with	GM myths)	GM myths)			
	GM myths)	N=324	N=761			
	N=714					
Price	-0.83***	-0.70***	-0.37***			
	(0.03)	(0.04)	(0.02)			
None	-3.95***	-3.48***	-2.27***			
	(0.13)	(0.18)	(0.11)			
Pulp	-1.07***	-1.12***	-0.49***			
	(0.05)	(0.08)	(0.04)			
Made-in-USA	0.78***	0.56***	0.50***			
	(0.04)	(0.06)	(0.03)			
Non-GMO	0.17**	0.20*	0.44***			
	(0.08)	(0.12)	(0.08)			
Non-GMO*Facts only	0.10	-0.22	-0.21**			
	(0.11)	(0.18)	(0.10)			
Non-GMO*Myth vs	0.05	0.04	-0.28***			
Facts	(0.11)	(0.16)	(0.11)			
Non-GMO*Facts only	0.02	-0.20	-0.10			
(longer version)	(0.12)	(0.17)	(0.10)			
Non-GMO*Myth vs	0.03	-0.04	-0.21**			
Facts (longer version)	(0.12)	(0.17)	(0.10)			
Note - *p < .1, **p < .05,	***p < .01.					
Numbers in parenthesis are standard errors						

Political Affiliation Sub-Group Analysis

	Group 1	Group 2	Group 3
	(Republicans)	(Democrats)	(Independent/Othe
	N=527	N=757	rs)
			N=515
Price	-0.71***	-0.45***	-0.74***
	(0.03)	(0.02)	(0.03)
None	-3.46***	-2.66***	-3.49***
	(0.15)	(0.11)	(0.15)
Pulp	-0.89***	-0.71***	-0.96***
	(0.06)	(0.05)	(0.06)
Made-in-USA	0.80***	0.47***	0.64***
	(0.05)	(0.03)	(0.05)
Non-GMO	0.37***	0.37***	0.06
	(0.09)	(0.07)	(0.05)
Non-GMO*Facts only	-0.15	-0.20**	0.27**
	(0.13)	(0.10)	(0.14)
Non-GMO*Myth vs	-0.14	-0.24**	0.23*
Facts	(0.14)	(0.10)	(0.14)
Non-GMO*Facts only	-0.10	-0.13	0.07
(longer version)	(0.13)	(0.21)	(0.14)
Non-GMO*Myth vs	-0.15	-0.31***	0.39***
Facts (longer version)	(0.13)	(0.10)	(0.14)

Main Take-aways

- Misinformation interventions can
 - Improve GM safety perceptions
 - Influence purchase behavior
 - Be affected by attitudinal variables
- Important implications for stakeholders
 - Formats can be used to target safety concerns in education programs
 - Different strategies for different consumer groups
 - Value of relevant scientific information in overcoming biotechnology misconceptions

Conclusion

- In general, there is hope for improving consumers' acceptance of biotechnology
- Food biotechnology stakeholders will find the factors highlighted in this study useful when designing programs to improve acceptance

Thank you! Any questions?

