

CENTER FOR FOOD SAFETY & APPLIED NUTRITION

Advancing Food Safety: Integration of Environmental Monitoring and Genomics

Rebecca Bell, Ph.D.

FDA/CFSAN/ORS

JIFSAN Global Water Food Safety Summit

November 2019

Fig 1. in Thompson, A. R. C. (2013) Parasite zoonoses and wildlife: One health, spillover and human activity. *International Journal for Parasitology*, 43:1079-1088.

Impact

- Ecology, Distribution, Persistence
- Combine with genomics (traditional/functional)
 - better source tracking
 - development of preventative controls

Previous Tomato Outbreaks

2002	S. Newport*	512 cases				
	S. Newport	12 cases				
	S. Javiana	90 cases				
2005	S. Newport*	71 cases				
	S. Braenderup	76 cases				
	S. Enteritidis	77 cases				
2006	S. Newport*	107 cases				
	S. Typhimurium	186 cases				
2007	S. Newport*	57 cases				
2010	S. Newport	46 cases				
		(retrospective traceback confirmed)				
2011	S. Newport*	99 cases				
2014	S. Newport *	283 cases First Incident Associat	ted			
	S. Javiana	78 cases with Maryland Produc	се			

Delaware Bay, are

Delmarva Peninsula

Virginia Tech Eastern Shore Agricultural Research Extension (AREC), Painter, VA

Summary Findings From VA

Environmental/Surface water sampling

 Collected samples from 11 different stated on the East Coast

FDA

- Some studies were short (*5 sites per state, 4 samplings over 1 summer)
- Some studies were one year or more, longitudinal efforts to the same sites at regular intervals

S. Newport: 547 isolates from 11 states

350

 PFGE Xbal-JJPX01.0061(30 isolates) shown in red
Grouped into 8 clusters
Less than 30 SNPs difference between the clusters

FDA's GenomeTrakr

- Distributed network of labs using WGS for foodborne pathogens
- Contributing members:
 - -13 U.S. FDA Labs
 - -11 PulseNet Labs (State Public Health Labs)
 - -5 U.S. Department of Agriculture Labs
 - -7 University Labs
 - -3 Private Labs
 - -2 International Labs (Argentina, Mexico)
 - -1 U.S. Hospital Lab
 - All data is submitted to National Center for Biotechnology Information (NCBI)
 - Data curation and bioinformatic support
 - Pathogen Detection
 - Produces daily trees from current SNP clusters

Pathogen Detection **BETA**

View the recent webinar: '<u>Introducing the Pathogen Detection Isolates</u> Browser'.

NCBI Pathogen Detection integrates bacterial pathogen genomic sequences originating in food, environmental sources, and patients. It quickly clusters and identifies related sequences to uncover potential food contamination sources, helping public health scientists investigate foodborne disease outbreaks.

Find isolates now!

Examples:

 Search for isolates encoding a mobile colistin resistance gene and a KPC beta-lactamase search: <u>AMR_genotypes:mcr* AND AMR_genotypes:blaKPC*</u>
Search for Salmonella isolates from the USA

search: geo_loc_name: USA AND taxgroup_name: "Salmonella enterica"

Explore the Data

Species	New Isolates	Total Isolates
Salmonella enterica	<u>18</u>	235,224

Learn More

<u>About</u>

FAQ

Browser Factsheet

Antimicrobial Resistance Factsheet

Antimicrobial Resistance

Contributors

<u>Help</u>

Data Resources

Isolates Browser

Pathogen Detection Reference Gene Catalog

Isolates with antibiotic resistant phenotypes

Download analysis results (FTP)

Submit

Antimicrobial Resistance Genes

Resistance gene	istance gene Predicted phenotype Identity Query/Template length			
aac(6')-laa	Aminoglycoside resistance	98.63%	438/438	
	Position	Nuc change	AA change	Resistance
parC	parC p.T57S	$ACC \to AGC$	$T \rightarrow S$	Nalidixic acid,Ciprofloxacin

ResFinder Analysis

Threshold of Identity 90%Minimum Length 60%

All 530 isolates have the identical Acquired antimicrobial resistance gene profile

All but six isolates share the identical Known Mutation profile

SPI Presence

SPI1	68.50%			
SPI2	95.86%			
SPI3	95.86%			
SPI4	47.27%			
SPI5	100%			
SPI12	3.57%			
SPI13	100%			
SPI14	100%			
C63PI	100%			

SPIFinder Analysis

Threshold of Identity 90%Minimum Length 60%

Due to the usage of draft genome, false negative are possible

Functions of SPIs identified in Lineage III S. Newport

	Size (kB)	GC%	Functions			
SPI-1	38.8	45.9	TTSS-1, invasion and proinflammatory responses, Fe2+ and Mn 2+ uptake			
SPI-2	39.8	47.4	TTSS-2, intracellular survival; tetrathionate respiration			
SPI-3	17.3	47.6	Colonization of GI tract, Mg2+ uptake			
SPI-4	23.4	44.8	TISS, colonization of cattle GI tract			
SPI-5	7.6	43.6	TTSS-1 and TTSS-2 effector proteins, enteropathogenic responses			
SPI-12	6.3	49.92	TTSS-2 Effector			
SPI-13	19.5	48.1	Virulence in chicks			
SPI-14	8.7	41.4	Virulence in chicks			
C63PI (Centisome 63)		SPI locates at centisom 63				

Clade defining SNPs

Desition		Draduat	Def hase	Def. coden	Def. rec	CND turns	New have	New coden	New rec
Position	ocus tag	Product	Ref. base	Ref. codon	Ref. res.	SNP type	New base	New codon	New res.
	Clade VI								
228329 S	EENLE01_001045	hypothetical protein	G	CTG	L	synonymous	Α	CTA	L
671544 SI	EENLE01_003170	flotillin	Т	GTA	V	nonsynonym	Α	GAA	E
1068222 SI	EENLE01_005140	multidrug export protein EmrA	G	GCC	Α	nonsynonym	Α	ACC	Т
1252656 SI	EENLE01_006025	pyridoxine 5'-phosphate synthase	С	ACC	т	synonymous	т	ACT	т
2335611 S	EENLE01_011225	methyl viologen resistance protein SmvA	С	GCC	Α	synonymous	т	GCT	Α
2337186 SI	EENLE01_011235	porin	G	СТС	L	synonymous	Α	CTA	L
2577044 SI	EENLE01_012435	threoninetRNA ligase	С	CGC	R	nonsynonym	т	TGC	С
3217918 S	EENLE01_015790	glycosyl transferase	С	ССТ	Ρ	nonsynonym	т	TCT	S
3517731 S	EENLE01_017335	multidrug ABC transporter permease/ATP-binding protein	С	GCG	Α	nonsynonym	т	GTG	V
3517802 S	EENLE01_017335	multidrug ABC transporter permease/ATP-binding protein	G	GAG	E	synonymous	Α	GAA	E
4106327 S	EENLE01_020075	PTS sugar transporter	С	TCA	S	nonsynonym	т	TTA	L
4106947 SI	EENLE01_020080	Fis family transcriptional regulator	G	TGG	W	nonsense	Α	TAG	*
4457460 SI	EENLE01_021735	chemotaxis protein	G	GAT	D	nonsynonym	т	TAT	Y
4457520 SI	EENLE01_021735	chemotaxis protein	G	GTG	V	nonsynonym	Α	ATG	M
	Clade IV								
1321245 SI	EENLE01_006320	outer membrane protein assembly factor BamB	А	ACC	Т	nonsynonym	g	gCC	Α

Pathogen Colonization and Internalization Studies

- 70% of inoculated blossoms resulted in *Salmonella* isolated from within or on the developing fruit
- Newport, Javiana, Montevideo, and Saintpaul were all recovered from within developing tomatoes
- Salmonella Newport internalization through root system was internalized to stem (20%) and fruit (5%)

FD

Transcriptomics examination of adaptation of lineage III Newport in tomato

as

Anna Fàbrega, and Jordi Vila Clin. Microbiol. Rev. 2013;26:308-341

Salmonella Adaptations of particular interest to food safety specialists

- (1) Thermal tolerance
- (2) Dessication resistance
- (3) Osmotic/Ionic tolerance
- (4) Quat resistance
- (5) Chlorine resistance
- (6) Biofilm persistence
- (7) Surface adherence
- (8) Antibiotic resistance
- (9) Antimicrobial resistance
- (10) Ecological fitness
- (11) Heavy metal resistance
- (12) Metabolic persistence
- (13) Enhanced hydrophobic fitness
- (14) Produce invasiveness
- (15) Flower invasiveness
- (16) Root system invasiveness
- (17) Acid resistance

(18) Surface water fitness (19) In vivo plant migratory fitness (20) Soil fitness (21) Capsaicin resistance (22) Swarming (23) Trans-ovarian poultry colonization (24) Fecal persistence (poultry) (25) Yolk content invasion (26) Multidrug resistance (27) External amoeba harborage (28) Internal amoeba harborage (29) Acyl-homoserine lactone (AHL) (30) KatE stationary-phase catalase (31) In vivo migratory fitness (32) RDAR phenotype (33) The 'Weltevreden' type (34) Persistence within the tomato**

Key Conclusions

- Salmonella Pattern 61 and other clinically relevant isolates found consistently in waters and sediments
- Environmental waters and sediments are potential reservoirs for *Salmonella*
- Agricultural practices related to the use of contaminated surface waters are highly likely to introduce *Salmonella* onto crop plants

Water Sampling Methodologies

Traditional Gra Sample 1 L Modified Moore Swab (mMMS) 10 L Hollow Fiber Ultrafiltration 100L

Pros/Cons: -Ease of collection/processing -Cost

-Sensitivity of detection -Equivalent sample volume

Acknowledgements

Dr. Guojie Cao CFSAN HPOP group

Dr. Jie Zheng Christina Ferreira Elizabeth Reed

CFSAN Core Sequencing group

CFSAN Bioinformatics group

Questions???

If tomatoes are classified as a fruit...

Isn't ketchup technically a smoothie?