Global One Health and Role of –Omics in Strengthening Integrated Capacity to Address Food- and Waterborne Diseases

Wondwossen A. Gebreyes DVM, PhD, DACVPM Professor and Exec. Director, Global One Health initiative (GOHi)

Global Water Food Safety Summit November 19-21, 2019 (College Park, MD)

Role in the changing global dynamics.

The Global Risk

- Spread of infectious diseases;
- Water crises;
- Failure of climate change adaptation;
- Global travel;
- Man-made environmental catastrophes;
- Biodiversity loss and ecosystem collapse;
- Large-scale migration, conflict, refugees

Consequences – Very complex, wider in spectrum.

Global Risk Forum, 2016

THE OHIO STATE UNIVERSITY

An expanded paradigm

Climate change and water-borne diseases

THE OHIO STATE UNIVERSITY

Environmental Enteric Dysfunction (EED)

Impact of water availability on sanitation- Foodborne Pathogens

 Reduced colonization by Campylobacter, in children, improve sanitation and hygiene to reduce the prevalence of Environmental Enteric Dysfunction (EED) and thus childhood stunting.

Haramaya University, Eastern Ethiopia and UFL (USA)

The Added Burden of Antimicrobial Resistance (AMR) Global Public Health priority Crisis

Cumulative economic impact of AMR, > \$100 Trillion by 2050.

Global One Health initiative (GOHi)

Economic Impact of One Health issues- Zoonotic Food-Water- and vector-borne Diseases

"As a physician, the issue of antimicrobial resistance—or AMR—is very familiar to me. ...The problem goes beyond hospitals. Antimicrobial resistance crosses boundaries of nations, sectors, and even species—affecting livestock, crops, and wildlife...

The World Bank is coordinating efforts across agricultural, environmental, and health sectors under the umbrella of One Health—"

Dr. Jim Yong kim, 2014 President (Former)

Population, Global Preparedness on Research Capacity

Demand for Animal Source Food (ASF) and water is increasing at high rate.

Global investment on Health Research

Name of funder	Type of funder	Total Amount Invested (US\$)
US National Institutes of Health (NIH)	Government	5,795,734,228
Bill & Melinda Gates Foundation	Private foundation	2,530,342,885
Aggregate Pharmaceutical and Biotechnology Company Respondents	Private	2,037,077,360
European Commission: Directorate-General for Research and Innovation*	Government	567,311,143
United States Agency for International Development (USAID)	Government	416,278,263
US Department of Defense (DOD) including DOD Defense Advanced Research Projects Agency (DARPA)	Government	403,029,646
The Wellcome Trust	Charity	361,225,501
UK Department for International Development (DFID)	Government	348,154,635
UK Medical Research Council (MRC)	Government	270,742,509
Institut Pasteur	Private foundation	161,012,834
Dutch Directorate General of International Cooperation	Government	128,593,178
Australian National Health and Medical Research Council	Government	100,613,706
Grand total		13,120,115,888

Disease area	Total Amount Invested (US\$)	% of total funding allocated							
HIV/AIDS	5,488,168,543	43.5%							
Malaria	2,709,915,003	21.5%							
ТВ	2,508,349,300	19.9%							
Dengue	781,191,533	6.2%							
Kinetoplastids*	706,168,846	5.6%							
Helminths (Worms & Flukes)	352,659,673	2.8%							
Leprosy	42,627,803	0.3%							
Trachoma	19,653,909	0.2%							
Buruli Ulcer	17,429,734	0.1%							
Grand Total	12,626,164,344	100%							

-Omics and associated technologies provides efficient, high-throughput solutions

- Genomics
- Proteomics
- Metagenomics
- Transcriptomics
- Metabolomics
- Meta-metabolomics etc.

Need for innovative and cost-effective systems

Many tests for one pathogen

One test for all pathogens

Ghanem and El-gazzar,2017

https://www.gatc-biotech.com/en/expertise/targeted-sequencing/16s-rrna-analysis.html

- 1. Microbial Identification
- 2. Outbreak / source tracking
- 3. Rapid, Point-of-care detection
- 4. Antibiotic Resistance
- 5. Virulence / Hypervirulence

Basic Data Flow for Global WGS Public Access Databases

DATA ACQUISITION

Sequence and upload genomic and geographic data

DATA ASSEMBLY, ANALYSIS, AND STORAGE

International Nucleotide Sequence Database Collaboration (INSDC)
Shared Public Access Databases

- NCBI National Center for Biotechnology Information
- EMBL European Molecular Biology Laboratory
- DDBJ DNA Databank of Japan

PUBLIC HEALTH APPLICATION AND INTERPRETATION OF DATA

- Find clinical links
- Identify clusters
- Conduct traceback
- Develop rapid methods
- · Develop culture independent tests
- · Develop new analytical software

11/2014

State, Local, Federal, and Foreign Public Health Agencies

Academia/Industry

Portable data and visualization

Vision

Capable professionals and institutional systems that support and advance a healthy, enduring global community

Compelling Global Challenge

Integrated approach to build capacity, to mitigate diseases and associated hazards; influence science & policy at the interface between & among humans, animals, plants and the environment- **Global One Health**.

Integrated approach is essential for the sustainability of our planet.

Challenge- How do you build capable professions; influence policy and sustain impact?

Global One Health- Capacity Needs

- Food and water safety
- Re-emergence: multi-drug resistance (MDR), hypervirulent,
- Vector-borne Diseases
- Chemical hazards: antibiotics, pesticides...
- Biodefense and biosecurity
- Malnutrition and environmental enteric dysfunction (EED)
- Interaction and chronic outcomes (cancer)
- Lives and livelihood
- International trade
- Sustainability

1000+ MDR Salmonella submitted to FDA CFSAN

- Brazil (104)
- Ethiopia (401)
- Kenya (86)
- Mexico (63)
- Tanzania (64)
- Thailand (60)
- U.S. -OSU (247)

E. Coli

Eastern Africa

Campylobacter

Ethiopia

Building Capacity- NIH-GID/ Research Training Program (OHEART)

Molecular Epidemiology of MDR Salmonella in Tanzania (Julius Medardus)

Enteric caliciviruses in pigs and cattle (Zufan Sisay - Addis Ababa University, Ethiopia)

MRSA among HIV, Hospital and Food

handler cohorts (Benear Obanda - Kenya

Molecular Typing and Antimicrobial Resistance of Campylobacter (Isaac Kashoma - Sokoine University of Agriculture, Tanzania)

Salmonella WGS- Mexico

- Blast Atlas
- SNP- based phylogeny

Distribution of strains per isolation site:

Mexico City: samples 107-119

Guadalajara City: samples 120-126

Mexicali City: samples 127-167

Antimicrobial Resistance and Virulence

- Increasing prevalence of antibiotic resistant strains
- Special case of directed evolution
- Acquire AMR genes or virulence-associated genes

from the environment.

- Often independent of serotype or gene markers
- NGS comprehensively and unambiguously track AMR and virulenceassociated genes

Identify and correlate- AMR phenotype/ genes

	AMR genotype																														
	β-lac	ctams	Q	uinc	lone	!S	Aminoglycosides													Amphenicols Tetr							Multi	drug e	efflux	pump	s familie
AMR phenotype	blaTEM-1	blaCARB-2	qnrA1	qnrB	qnrB19	oqxAB	aac(3)-IId	aadA2 aadA2	aadA5	aadA22	aph(3'')-lb	aph(3')-Ia	aph(6)-Id	sul1	sul2	dfrA1	dfrA12	dfrA17	floR	catA1	tetA	tetB	qacEDelta1	mph(A)	bleO	fosA	mdtABCD	MATE	MES		หทบ ATP-depdent ABC
Amp																															
Tet						T			Т																						
Car																															
Amp/Cef									Т																						
Amp/Car						T			T																						
Amp/Tet																															
Amp/Car/Tet	1 10	100							Τ																						
Amp/Car/Sxt/Tet	7	10	10																												
Amp/Car/Sxt/Tet			10	de																											
Chl/Str/Sxt/Tet/Kan	1				99 69	23																									
Amp/Car/Cef/Chl/Tet	120	100				9																									
Amp/Car/Sxt/Gen/Tet		0	100																												
Amp/Car/Sxt/Chl/Tet				24		1	d																								
Amp/Car/Cef/Sxt/Tet	1	1	1																												
Chl/Str/Sxt/Tet/Kan	16/1			7.0	27	10																									
Amp/Car/Cef/Tet/Cro/Net				1	- OCA			01																							
Amp/Car/Cef/Sxt/Chl/Gen/Tet						4.19																									
Amp/Car/Cef/Sxt/Gen/Net/Tet	4				14			_	Ĭ																						

Amp, ampicillin; Amx, amoxicillin; Amc, amoxicillin clavulanic acid; Car, carbenicillin; Cro, ceftriaxone; Cef, cephalotin; Ctx, cephotaxime; Cip, ciprofloxacin; Pef, pefloxacin; Amk, amikacin; Kan, kanamicin; Gen, gentamicin; Str, streptomycin; Net, netilmicin; Sxt, trimethoprim-sulfamethoxazole; Chl, chloramphenicol; Nit, nitrofurantoin; Tet, tetracycline

Gene present Gene absent

Shotgun Metagenomics

- Comprehensive sampling all genes in all organisms in a complex sample
- Metabolic pathways and gene function
- Evaluation of bacterial diversity
- Detect the abundance of microbes in various environments
- Studying unculturable microorganisms

Campylobacter Genomics and Enteric Dysfunction (CAGED)

CAGED- Identification of multiple bacteria

Metabolomics

IBD associated Microbes and Metabolic profiles

Fransoza et al., 2019

Global context

- Oxford Nanopore (Minion)
- Portable
- Very long read length
 - Easier bioinformatics
 - Quality? V. short reads
- Complement with Illumina
- No capital cost
 - Catch?

Training for Transformative Impact

Bringing multi-disciplinary teams/ Global One Health knowledge-sharing

Take Home Message

- Water/ Food- Key conduits for One Health;
- Integrated approaches- addressing biological and chemical hazards
- Lack of <u>capacity</u> and harmonization of research and surveillance is critical;
- Genomics+ play key role;
- Resource mobilization to address Global Water and Food Safety is key for success;
- FDA and global partners leadership is needed.

THE OHIO STATE UNIVERSITY

Thank You! እናውሰግናለን።

Muchas Gracias!

谢谢

Asante Sana!

شكرا جزيلا

Merci Beaucoup!

Благодаря ти

Terima Kasih

நன்றி

Muito Obrigado!

תודה רבה

Vielen Dank!

Murakoze!

ขอบคณมาก

